第二次机器革命
(美)埃里克·布莱恩约弗森 (美)安德鲁·麦卡菲更新时间:2019-01-04 19:12:18
最新章节:译后记开会员,本书8折购 >
《第二次机器革命:数字化技术将如何改变我们的经济与社会》是一本充满积极和智慧力量的书。《第二次机器革命》将改变我们思考技术、社会和经济发展的方式。全球化是20世纪末期最重要的经济话题,有《世界是平的》为证;在21世纪初期,技术变革将会成为社会的热点话题,《第二次机器革命》可以为证。《第二次机器革命》中,埃里克·布莱恩约弗森和安德鲁·麦卡菲——这两位处于数字技术时代最前沿的思想家,向我们阐述了驱动我们经济和生活的发生变革的力量。他们认为,数字技术将会给我们带来难以想象的巨大变革:想象一下令人眩目的个人数字技术产品、一流的基础设施,都将会给我们带来极大的便利。数字技术(其核心是硬件、软件和网络)在不久的将来能够比医生更准确地诊断疾病,能够使用海量的数据改变零售行业,而且还能够相当人性化地完成很多工作。数字化技术在给我们带来极大便利的同时,也给各种职业带来永久性、颠覆性的改变。各种公司也将被迫转型,否则只能消亡。凭借对数字化技术和社会发展趋势的精准研究,布莱恩约弗森和麦卡菲辨析出了的生存与发展战略,也给我们找到了一条通向社会发展与繁荣的新路径。未来几十年,新一轮科技革命和产业变革将同人类社会发展形成历史性交汇,工程科技进步和创新将成为推动人类社会发展的重要引擎。对中国来说,打造创新型国家的历史使命已经开启,中国制造业也在面临迫在眉睫的全球挑战。在第二次机器革命的浪潮袭来之时,中国政府、中国企业和个人该如何面对这场剧变?
品牌:中信出版社
译者:蒋永军
上架时间:2016-12-01 00:00:00
出版社:中信出版社
本书数字版权由中信出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
(美)埃里克·布莱恩约弗森 (美)安德鲁·麦卡菲
主页
最新上架
- 会员
MindSpore大语言模型实战
随着ChatGPT等大语言模型的迅速发展,大语言模型已经成为人工智能领域发展的快车道,不同领域涌现出各种强大的新模型。开发者想要独立构建、部署符合自身需求的大语言模型,需要理解大语言模型的实现框架和基本原理。本书梳理大语言模型的发展,首先介绍Transformer模型的基本原理、结构和模块及在NLP任务中的应用;然后介绍由只编码(Encoder-Only)到只解码(Decoder-Only)的技术计算机6.6万字 - 会员
解构ChatGPT
ChatGPT的诞生与迭代,昭示着AIGC领域向前迈出了重要一步,以更为拟人的人工智能提高了人机对话效率和自然程度,可能彻底改变人类与计算机的交互方式。因此,大众对于ChatGPT类产品的认识和学习将对自身成长与社会进步大有裨益。为帮助读者快速了解ChatGPT,本书避免使用过多的专业术语和复杂的数学推导过程,而是采用生动的示例和精致的图表,重点围绕ChatGPT的技术变迁、应用变革与挑战变局,图计算机14.4万字 - 会员
一本书读懂大模型:技术创新、商业应用与产业变革
这是一本人人都能读懂的大模型综合指南,既是一本大模型的科普书,又是一本大模型的商业书。由中国电信研究院天翼智库官方出版,从核心技术、基础设施、商业应用、产业体系、安全治理5个维度全面讲解了大模型。语言上通俗易懂,内容上深入浅出,呈现上图文并茂,给读者良好阅读体验的同时,让读者对大模型的理解事半功倍!无论你是AI工程师,还是完全没有IT技术背景的爱好者;无论你是一线的从业人员,还是企业的管理者和决策计算机13.2万字 - 会员
量子人工智能
量子计算与人工智能的交叉融合,促使量子人工智能的不断发展。本书旨在采用对深度学习爱好者友好的方式,构建量子人工智能应用。全书共13章,第1章和第2章系统介绍量子计算机发展脉络和量子计算编程的基础知识。第3~7章分别介绍不同的深度学习方法和在这些算法逻辑上构建量子启发算法的方式,用量子线路中的相位作为神经网络的可学习参数,重构为量子神经网络算子。这些算子可以在PyTorch环境中直接调用。第8章和第计算机7.6万字 - 会员
知识图谱从0到1:原理与Python实战
本书旨在帮助读者全面理解知识图谱的基本原理和概念。通过清晰的解释和实例,读者将深入了解知识图谱的构建、表示、推理等关键知识点。此外,本书通过提供代码实战,引导读者亲自动手构建知识图谱,并应用各种技术和工具进行实践。这种实践性的讲解方法可帮助读者更深入地理解知识图谱的实际应用。本书的目标是帮助读者全面理解知识图谱的基本原理和概念,并通过代码实战构建知识图谱。同时,本书也提供了关于大语言模型与知识图谱计算机9.6万字 - 会员
机器学习的算法分析和实践
本书是一本全面介绍机器学习方法特别是算法的新书,适合初学者和有一定基础的读者。机器学习可以分成三大类别,监督式学习、非监督式学习和强化学习。三大类别背后的算法也各有不同。监督式学习使用了数学分析中函数逼近方法、概率统计中的极大似然方法。非监督式学习使用了聚类和贝叶斯算法。强化学习使用了马尔可夫决策过程算法。机器学习背后的数学部分来自概率、统计、数学分析以及线性代数等领域。虽然用到的数学较多,但是最计算机7.4万字 - 会员
PyTorch深度学习应用实战
《PyTorch深度学习应用实战》以统计学/数学为出发点,介绍深度学习必备的数理基础,讲解PyTorch的主体架构及最新的模块功能,包括常见算法与相关套件的使用方法,例如对象侦测、生成对抗网络、深度伪造、图像中的文字辨识、脸部辨识、BERT/Transformer、聊天机器人、强化学习、自动语音识别、知识图谱等。本书配有大量案例及图表说明,同时以程序设计取代定理证明,缩短学习过程,增加学习乐趣。计算机15.2万字 - 会员
洞察AIGC:智能创作的应用、机遇与挑战
《洞察AIGC:智能创作的应用、机遇与挑战》内容分为3篇:第1篇AIGC的蜕变讲述AIGC的发展历史及其背后的智能;第2篇AIGC的应用讲述AIGC在文学创作、日常办公、知识管理、科研出版、工业制造、健康医疗、金融服务、品牌营销领域的应用现状及常用工具;第3篇AIGC的机遇与挑战讲述AIGC的资本与技术前景,同时提出需要注意的风险。计算机13.9万字 - 会员
大模型实战:微调、优化与私有化部署
本书深入浅出地介绍了现代大型人工智能(ArtificialIntelligence,AI)模型技术,从对话机器人的发展历程和人工智能的理念出发,详细阐述了大模型私有化部署过程,深入剖析了Transformer架构,旨在帮助读者领悟大模型的核心原理和技术细节。本书的讲解风格独树一帜,将深奥的技术术语转化为简洁明了的语言,案例叙述既严谨又充满趣味,让读者在轻松愉快的阅读体验中自然而然地吸收和理解AI计算机15.8万字