会员
机器学习:软件工程方法与实现
张春强 张和平 唐振更新时间:2021-01-07 17:13:46
最新章节:16.6 本章小结开会员,本书免费读 >
本书视角独特,将软件工程中的方法应用到机器学习实践中,重视方法论和工程实践的融合。本书主要有3个特点。1)机器学习的软件工程方法:用软件工程(SoftwareEngineering)中的工具、方法和理论指导机器学习的实践活动。主要体现在测试驱动开发(TDD)方法、机器学习项目管理方法、工程化软件应用于数据科学标准化环境,以及开源算法包的大量实践应用案例等。2)机器学习全生命周期:书中全面呈现了机器学习项目开发的完整链路,以项目需求为起点,历经样本定义、数据处理、建模、模型上线、模型监控、模型重训或重建。流程中的大部分节点独立成章,阐述充分,并且不是单纯地阐述理论,而是重在实践。同时,聚焦机器学习中应用最广泛和最有效的算法,使之成为贯穿机器学习项目生命周期的一条完整的学习路径。3)提出机器学习是一门实验学科:书中有大量的工业实践代码,例如数据分析包、特征离散化包、特征选择包、集成模型框架包、大规模模型上线系统架构和对应代码包等,对机器学习算法特性也有大量的代码解析。书中还多次强调对于机器学习这样一门实验和实践学科,工具、方法和策略的重要性,并介绍了在实际项目中对时间、人力成本等的权衡策略。本书不拘泥于公式推演、数值分析计算领域优化求解(梯度、牛顿、拉格朗日、凸优化)等主题,而重在展现机器学习的实际应用,以及各知识点的落地。在写作方式和内容编写等方面,本书力求既贴近工程实践又不失理论深度,给读者良好的阅读体验。
品牌:机械工业出版社
上架时间:2020-11-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
张春强 张和平 唐振
主页
同类热门书
最新上架
- 会员
PyTorch 2.0深度学习从零开始学
PyTorch是一个开源的机器学习框架,它提供了动态计算图的支持,让用户能够自定义和训练自己的神经网络,目前是机器学习领域中的框架之一。《PyTorch2.0深度学习从零开始学》共分15章,内容包括PyTorch概述、开发环境搭建、基于PyTorch的MNIST分类实战、深度学习理论基础、MNIST分类实战、数据处理与模型可视化、基于PyTorch卷积层的分类实战、PyTorch数据处理与模型可计算机11.3万字 - 会员
破解深度学习(基础篇):模型算法与实现
本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的基础知识。本书总计9章,深入浅出地介绍了深度学习的理论与算法基础,从理论到实战全方位展开。前三章旨在帮助读者快速入门,介绍了必要的数学概念和必备工具的用法。后六章沿着深度学习的发展脉络,从最简单的多层感知机开始,讲解了深度神经网络的基本原理、常见挑战、优化算法,以及三大典型模型(基础卷积神经网络、基础循环神经网络和注意力神计算机14.8万字 - 会员
合成生物学智能化设计与应用
本书以人工智能技术在合成生物学领域的理论、方法及应用为主线,详细阐述人工智能在合成生物学不同层面设计中的应用进展,深入讨论人工智能在合成生物学实际应用中面临的挑战与困难。本书先概述合成生物学与人工智能基本概念以及发展简史,然后介绍人工智能技术在生物元件、生物模块、生物系统设计方面的应用,并通过案例展示了人工智能与合成生物学技术在生物医药领域的研究进展,最后分析了人工智能驱动合成生物技术的发展趋势,计算机23万字 - 会员
文心一言:人人都能上手的AI工具
本书作为文心一言的学习指南,全面、细致地介绍了文心一言PC端和App的各项功能和使用方法,力求通过简洁明了的语言和图文并茂的形式,让读者快速掌握文心一言的各项功能。全书共8章,首先简单介绍了人工智能发展的几个阶段及文心一言的相关研发背景;随后介绍了文心一言的基础页面及功能等内容,以及文心一言在学习、工作、生活娱乐方面的应用及相关案例;接着介绍了文心一言的插件,以及文心一言App的功能和使用技巧;最计算机10.7万字 - 会员
AI帮你赢:人人都能用的AI方法论
本书强调“把AI作为方法”(AI即ArtifcialIntelligence,人工智能)这一核心理念,旨在引导读者掌握与AI对话的关键技巧,并将AI融入工作和生活真正体验AI带给人类的高效与便捷。本书从技术的发展规律人手,探讨了把AI作为方法的必然性和必要性,进一步剖析了算法与哲学在内在逻辑上的贯通性。此外,本书通过丰富多样的案例展示了AI的强大魅力,通过一系列“召唤术”帮助读者运用AI创造性地计算机9.7万字 - 会员
智能控制与强化学习:先进值迭代评判设计
在人工智能技术的大力驱动下,智能控制与强化学习发展迅猛,先进自动化设计与控制日新月异。本书针对复杂离散时间系统的优化调节、最优跟踪、零和博弈等问题,以实现稳定学习、演化学习和快速学习为目标,建立一套先进的值迭代评判学习控制理论与设计方法。首先,对先进值迭代框架下迭代策略的稳定性进行全面深入的分析,建立一系列适用于不同场景的稳定性判据,从理论层面揭示值迭代算法能够实现离线最优控制和在线演化控制。其次计算机8.7万字 - 会员
智能计算系统:从深度学习到大模型
本书由中科院计算所、软件所的专家学者倾心写就,以“图像风格迁移”应用为例,全面介绍智能计算系统的软硬件技术栈。第2版以大模型为牵引进行更新,第1章回顾人工智能、智能计算系统的发展历程,第2、3章在介绍深度学习算法知识的基础上增加了大模型算法的相关知识,第4章介绍深度学习编程框架PyTorch的发展历程、基本概念、编程模型和使用方法,第5章介绍编程框架的工作原理,第6章回顾深度学习所用的处理器结构从计算机34.9万字 - 会员
大型语言模型实战指南:应用实践与场景落地
这是一本系统梳理并深入解析大模型的基础理论、算法实现、数据构造流程、模型微调方法、偏好对齐方法的著作,也是一本能手把手教你构建角色扮演、信息抽取、知识问答、AIAgent等各种强大的应用程序的著作。本书得到了零一万物、面壁智能、通义千问、百姓AI、澜舟科技等国内主流大模型团队的负责人的高度评价和鼎力推荐。具体地,通过本书你能了解或掌握以下知识:(1)大型语言模型的基础理论,包括常见的模型架构、领计算机11.2万字 - 会员
从零开始大模型开发与微调:基于PyTorch与ChatGLM
大模型是深度学习自然语言处理皇冠上的一颗明珠,也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。《从零开始大模型开发与微调:基于PyTorch与ChatGLM》共18章,内容包括人工智能与大模型、PyTorch2.0深度学习环境搭建计算机12.8万字