
会员
机器学习中的统计思维(Python实现)
董平编著更新时间:2024-12-27 19:20:38
最新章节:4.5 拉格朗日对偶思想开会员,本书免费读 >
机器学习是人工智能的核心,而统计思维则是机器学习方法的核心:从随机性中寻找规律性。例如,利用损失最小化思想制定学习策略,采用概率最大化思想估计模型参数,利用方差对不确定性的捕捉构造k维树,采用贝叶斯公式构建分类决策模型,等等。只有树立正确的统计思维,才能准确高效地运用机器学习方法开展数据处理与分析。本书以统计思维的视角,揭示监督学习中回归和分类模型的核心思想,帮助读者构建理论体系。
品牌:清华大学
上架时间:2023-09-01 00:00:00
出版社:清华大学出版社
本书数字版权由清华大学提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
董平编著
主页
同类热门书
最新上架
- 会员
AI时代程序员开发之道:ChatGPT让程序员插上翅膀
本书从介绍“ChatGPT第一次接触”开始,分析如何使用该工具来提高开发效率和质量。书中每一章都涵盖了ChatGPT的不同应用场景,从编写各种文档,到辅助进行需求分析和系统设计,以及数据库设计和开发高质量代码等均有讲解。还介绍了如何使用ChatGPT辅助进行系统测试以及任务管理,并对源代码底层逻辑进行了分析。计算机8.8万字 - 会员
AIGC驱动工业智能设备:系统设计与行业实践
(1)AI与AIGC基础知识:从基础入手,深入讲解AI技术的基本概念和原理。通过通俗易懂的讲解和示例,帮助读者建立坚实的理论基础,为后续章节的深入学习打下良好基础。(2)智能设备上的AIGC系统设计:详细介绍AIGC技术在实际应用过程中的各种功能设计和实现方法。内容涵盖算法选择、模型训练、系统集成等各个环节,通过丰富的技术细节和设计策略,帮助读者全面掌握AIGC技术的应用要点。(3)AIGC关键工计算机18万字 大模型垂直领域低算力迁移:微调、部署与优化
本书是一本深度探讨大模型在低算力环境下实现迁移与微调的实践指南,并深入讲解了大模型的部署与优化策略。书中结合多个垂直领域的应用场景,从理论到技术实现,全程详尽讲解了如何应对大模型在行业落地中的技术挑战,帮助读者逐步掌握大模型的迁移与微调核心技术。无论你是大模型开发者、人工智能研究人员,还是对垂直领域AI应用感兴趣的行业专家,本书都将带你深入大模型的核心领域,提供从构建、优化到部署的全流程指导,助你计算机13.7万字- 会员
设计深度学习系统
本书主要从软件开发者的角度探讨如何构建和设计深度学习系统。作者首先描述一个典型的深度学习系统的整体,包括其主要组件以及它们之间的连接方式,然后在各个单独的章节中深入探讨这些主要组件。对于具体介绍的章节,会在开始时讨论需求,接着介绍设计原则和示例服务/代码,并评估开源解决方案。通过阅读本书,读者将能够了解深度学习系统的工作原理,以及如何开发每个组件。本书的主要读者对象是想要从事深度学习平台工作或将一计算机18.1万字 - 会员
AI虚拟仿真从入门到参赛
本书全面探讨人工智能三维仿真竞赛,包括竞赛的立意、类型和流程,并详细介绍人工智能三维仿真软件的核心功能,如编程、控制、循迹、定位等的应用。本书首先介绍人工智能三维仿真竞赛的基础知识,为读者打下坚实的理论基础;其次转向人工智能三维仿真软件的详细教学,通过具体案例强化读者的学习效果;最后总结人工智能三维仿真竞赛中的常见任务类型,并结合历史竞赛案例,为读者提供实际参考。本书适合准备参加人工智能三维仿真竞计算机4.4万字 - 会员
Sora AI视频生成、案例解析与场景应用
本书通过81个官方案例解析、120个知识点梳理,深入浅出介绍了Sora的技术原理、特色功能、创新之处、优势特点、文案工具、脚本创作、提示词技巧、绘画工具、创意应用、变现方式等,帮助读者一本书全面精通Sora的AI视频生成技术。10大专题内容、108分钟视频,手机扫码可看精华内容,同时赠送了9大超值资源:74组AI绘画提示词、104个效果文件、165页PPT课件、31集《AI摄影》教学视频、40集《计算机6.8万字 - 会员
人,伦理,机器人:一本孩子写给孩子的书
本书围绕“公平、隐私与保障、可靠与安全、包容、负责、透明”六个人工智能需要遵循的原则,诠释当代青少年对负责任的人工智能的认识和思考。计算机7.1万字 - 会员
深度学习与大模型基础
本书从基础的神经网络、卷积神经网络、循环神经网络等入门知识,到深度学习的应用领域如计算机视觉、自然语言处理等高级主题都有涉及,可以帮助读者更好地理解深度学习知识,并为未来的职业发展打下坚实的基础。计算机23.6万字 - 会员
人工智能数学基础与Python机器学习实战
本书分为3个部分:第1章和第2章是人工智能的数学基础,主要介绍了机器学习的概念、Python开发环境的搭建、机器学习bibei的数学知识,以及线性代数和概率论的相关知识;第3~12章主要介绍了回归模型、分类模型、聚类模型、半监督模型的建立和相关算法的理论,以及如何使用sklearn具体实现相关算法模型的搭建;第13章介绍了Spark机器学习,笔者认为对于机器学习,不能只限于Python中的skle计算机0字