
会员
AI短视频文案写作从入门到精通
更新时间:2025-03-28 09:33:06
最新章节:10.2 短视频策划文案写作公式开会员,本书免费读 >
本书共分为10章。第1章介绍短视频文案与AIGC;第2章为AIGC工具助力文案选题策划;第3章为短视频标题撰写与优化;第4章为短视频脚本与情节设计;第5章为短视频带货文案写作;第6章为评论区互动文案写作;第7章为段子文案写作;第8章为短视频内容标签化;第9章为短视频营销文案写作;第10章为短视频与AI的有机结合。
品牌:北大出版社
上架时间:2024-05-01 00:00:00
出版社:北京大学出版社
本书数字版权由北大出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
同类热门书
最新上架
智能涌现:AI时代的思考与探索
当前世界正处于百年变局,人类社会已经进入数字经济3.0时代:数字内容迭代,从1.0时代逐步迈入3.0时代;人工智能技术飞跃,从符号推理、深度学习走向知识+数据驱动的3.0时代;产业拓展更深更广,走向智能+3.0时代。随着大模型、ChatGPT、DeepSeek等智能涌现,我们该如何触发AI时代其他的突破性技术涌现?这些技术又该怎样反哺产业升级?本书阐述了人工智能技术演变的大趋势、算力驱动计算体系的计算机13.1万字- 会员
Keras深度学习与神经网络
本书从人工智能导论入手,阐述人工智能的发展及现状,重点介绍了机器学习和神经网络基础、反向传播原理、卷积神经网络和循环神经网络等内容。本书内容由浅入深,循序渐进,从神经元和感知机入手,逐步讲解深度学习中神经网络基础、反向传播以及更深层次的卷积神经网络、循环神经网络。本书知识体系完整,内容覆盖面广,介绍了深度学习中常用的模型和算法,助力读者多方位掌握深度学习的相关知识。本书可作为高等院校计算机等相关专计算机11万字 - 会员
人工智能治理研究
本书从技术和规制两个角度入手,以人工智能治理的法律、公共政策以及伦理规范等相关社会行为和社会关系的规则建立和运行为主要思考方向和研究进路,在梳理人工智能发展情况、欧盟及其他国家人工智能立法与政策发布现状的基础上,对人工智能治理的基础、基本路径及我国人工智能产业、政策与规制思路进行了全面和有益的探索。计算机23.9万字 - 会员
精通AI虚拟数字人制作与应用:直播主播+视频博主+营销推广+教育培训
本书内容从技能线和工具线展开介绍。其中,技能线介绍了虚拟数字人的技术原理、商业价值、创建工具等基础内容,以及AI文案、AI绘画、虚拟数字人及其直播、AI视频博主、AI带货主播、AI培训讲师等实操案例。工具线介绍了ChatGPT、StableDiffusion、腾讯智影、剪映等工具的使用方法,并通过实例介绍了使用这些工具制作数字人的技巧。计算机7.1万字 - 会员
《机器学习》习题参考
本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络计算机19.3万字 - 会员
硅基物语·AI大爆炸:ChatGPT→AIGC→GPT-X→AGI进化→魔法时代→人类未来
本书以第一人称视角,讲述AI的来龙去脉,表达AI的技术原理。从历史到未来,跨越百年时空;从理论到实践,解读AI大爆炸;从技术到哲学,穿越多个维度;从语言到绘画,落地实战演练。ChatGPT的诞生,引发了奇点降临,点亮了AGI(通用人工智能),并涉及大模型、深度神经网络、Transformer、AIGC、涌现效应等一系列技术前沿。计算机8.6万字 - 会员
科学仪器设备配置学:人工智能时代的界面管理
本书共八章,从高校资源配置的教育、科研、社会、经济规律视角,以建设卓越世界一流大学为导向,对高校科学仪器设备配置中的问题进行研究。计算机17.5万字 - 会员
预训练语言模型:方法、实践与应用
近年来,在自然语言处理领域,基于预训练语言模型的方法已形成全新范式。本书内容分为基础知识、预训练语言模型,以及实践与应用3个部分,共9章。第一部分全面、系统地介绍自然语言处理、神经网络和预训练语言模型的相关知识。第二部分介绍几种具有代表性的预训练语言模型的原理和机制(涉及注意力机制和Transformer模型),包括BERT及其变种,以及近年来发展迅猛的GPT和提示工程。第三部分介绍了基于Lang计算机12.7万字 - 会员
人工智能数学基础与Python机器学习实战
本书分为3个部分:第1章和第2章是人工智能的数学基础,主要介绍了机器学习的概念、Python开发环境的搭建、机器学习bibei的数学知识,以及线性代数和概率论的相关知识;第3~12章主要介绍了回归模型、分类模型、聚类模型、半监督模型的建立和相关算法的理论,以及如何使用sklearn具体实现相关算法模型的搭建;第13章介绍了Spark机器学习,笔者认为对于机器学习,不能只限于Python中的skle计算机0字