大学计算机基础教程(第七版)
上QQ阅读APP看书,第一时间看更新

1.3.4 人工智能

1.人工智能的概念

人工智能(Artificial Intelligence),英文缩写为AI,也称机器智能。“人工智能”一词最初是在1956年的Dartmouth学会上提出的,它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造智能机器或智能系统来模拟人类智能活动的能力,以延伸人们智能的科学。

关于人工智能这个问题,有太多的定义、阐述与理解,很难找到通行的准确定义。从广义来讲,能够执行自动程序的计算机、手机等所有的机械与设备,都应该纳入人工智能的范围,从手机、计算机、银行、汽车到人们生活中的几乎每一个环节,都已经有或多或少的人工智能发挥作用。但在普通人眼中,或许一些电影情节中那种拥有自己思想甚至情感的机器人,才是人工智能的典型代表。而业界更普遍的观点是把人工智能分为3种:弱人工智能、强人工智能和超人工智能。

弱人工智能观点认为不可能制造出能真正地推理和解决问题的智能机器,这些机器只不过看起来像是智能的,但是并不真正拥有智能,也不会有自主意识。目前,主流科研主要集中在弱人工智能上,并且一般认为这一研究领域已经取得可观的成就。

强人工智能观点认为有可能制造出真正能推理和解决问题的智能机器,并且,这样的机器被认为是有知觉的,有自我意识的。强人工智能又进一步分为:类人的人工智能,即机器的思考和推理就像人的思维一样;非类人的人工智能,即机器产生了和人完全不一样的知觉和意识,使用和人完全不一样的推理方式,即所谓的超人工智能。目前,强人工智能的研究还处于停滞不前的状态。

2.人工智能的技术应用

随着AI技术的发展,现代几乎各种技术的发展都涉及了人工智能技术,可以说人工智能已经广泛应用到许多领域,其典型的应用包括:

(1)符号计算

计算机最主要的用途之一就是科学计算,可分为两类:一类是纯数值的计算,例如求函数的值;另一类是符号计算,又称代数运算,这是一种智能化的计算,处理的是符号。符号可以代表整数、有理数、实数和复数,也可以代表多项式、函数、集合等。随着计算机的普及和人工智能的发展,相继出现了多种功能齐全的计算机代数系统软件,其中Mathematic和Maple是它们的代表。由于它们都是用C语言写成的,所以可以在绝大多数计算机上使用。

(2)模式识别

模式识别就是通过计算机用数学技术方法来研究模式的自动处理和判读。这里,把环境与客体统称为“模式”。用计算机实现模式(文字、声音、人物、物体等)的自动识别,是开发智能机器的一个关键的突破口,也为人类认识自身智能提供线索。计算机识别的显著特点是速度快、准确性和效率高。识别过程与人类的学习过程相似,以“语音识别”为例:语音识别就是让计算机能听懂人说的话,一个重要的例子就是七国语言(英、日、意、韩、法、德、中)口语自动翻译系统。该系统实现后,人们出国预定旅馆、购买机票、在餐馆对话和兑换外币时,只要利用电话网络和互联网,就可用手机、电话等与外国人通话。

(3)机器翻译

机器翻译是利用计算机把一种自然语言转变成另一种自然语言的过程,用以完成这一过程的软件系统叫作机器翻译系统。目前,国内的机器翻译软件不下百种,根据这些软件的翻译特点,大致可以分为三大类:词典翻译类、汉化翻译类和专业翻译类。

(4)机器学习

机器学习是机器具有智能的重要标志,同时也是机器获取知识的根本途径。有人认为,一个计算机系统如果不具备学习功能,就不能称其为智能系统。机器学习主要研究如何使计算机能够模拟或实现人类的学习功能。机器学习是一个难度较大的研究领域,它与认知科学、神经心理学、逻辑学等学科都有着密切的联系,并对人工智能的其他分支,如专家系统、自然语言理解、自动推理、智能机器人、计算机视觉、计算机听觉等方面,也会起到重要的推动作用。

(5)问题求解

人工智能的第一大成就是下棋程序,今天的计算机程序已能够达到下各种方盘棋和国际象棋的锦标赛水平。但是,尚未解决包括人类棋手具有但尚不能明确表达的能力,如象棋大师洞察棋局的能力。另一个问题是涉及问题的原概念,在人工智能中称为问题表示的选择,人们常能找到某种思考问题的方法,从而使求解变易从而解决该问题。到目前为止,人工智能程序已能知道如何考虑它们要解决的问题,即搜索解答空间,寻找较优解答。

(6)逻辑推理与定理证明

逻辑推理是人工智能研究中最持久的领域之一,其中特别重要的是要找到一些方法,只把注意力集中在一个大型的数据库中的有关事实上,留意可信的证明,并在出现新信息时适时修正这些证明。医疗诊断和信息检索都可以和定理证明问题一样加以形式化。因此,在人工智能方法的研究中,定理证明是一个极其重要的论题。

(7)自然语言处理

自然语言的处理是人工智能技术应用于实际领域的典型范例,经过多年艰苦努力,这一领域已获得了大量令人瞩目的成果。目前该领域的主要课题是:计算机系统如何以主题和对话情境为基础,注重大量的常识——世界知识和期望作用,生成和理解自然语言。这是一个极其复杂的编码和解码问题。

(8)分布式人工智能

分布式人工智能在20世纪70年代后期出现,是人工智能研究的一个重要分支。分布式人工智能系统一般由多个Agent(智能体)组成,每一个Agent又是一个半自治系统,Agent之间以及Agent与环境之间进行并发活动,并通过交互来完成问题求解。

(9)计算机视觉

计算机视觉是一门用计算机实现或模拟人类视觉功能的新兴学科,其主要研究目标是使计算机具有通过二维图像认知三维环境信息的能力,这种能力不仅包括对三维环境中物体形状、位置、姿态、运动等几何信息的感知,而且还包括对这些信息的描述、存储、识别与理解。目前,计算机视觉已在人类社会的许多领域得到成功应用。例如,在图像、图形识别方面有指纹识别、染色体识别、字符识别等;在航天与军事方面有卫星图像处理、飞行器跟踪、成像精确制导、景物识别、目标检测等;在医学方面有图像的脏器重建、医学图像分析等;在工业方面有各种监测系统和生产过程监控系统等。

(10)智能信息检索技术

信息获取和精化技术已成为当代计算机科学与技术研究中迫切需要研究的课题,将人工智能技术应用于这一领域的研究是人工智能走向广泛实际应用的契机与突破口。

(11)专家系统

专家系统是目前人工智能中最活跃、最有成效的一个研究领域,它是一种具有特定领域内大量知识与经验的程序系统。近年来,在“专家系统”或“知识工程”的研究中已出现了成功和有效应用人工智能技术的趋势。人类专家由于具有丰富的知识,所以才能达到优异的解决问题的能力。那么计算机程序如果能体现和应用这些知识,也应该能解决人类专家所解决的问题,而且能帮助人类专家发现推理过程中出现的差错,现在这一点已被证实。例如,在矿物勘测、化学分析、规划和医学诊断方面,专家系统已经达到了人类专家的水平。

3.人工智能发展中所面临的难题

人工智能(AI)学科自1956年诞生至今已走过60多个年头,就研究解释和模拟人类智能、智能行为及其规律这一总目标来说,已经迈出了可喜的一步,某些领域已取得了相当的进展。但从整个发展过程来看,人工智能发展曲折,而且还面临不少难题,主要有以下几方面:

(1)计算机博弈的困难

博弈是自然界的一种普遍现象,它表现在对自然界事物的对策或智力竞争上。博弈不仅存在于下棋之中,而且存在于政治、经济、军事和生物的斗智和竞争之中。2016年3月,谷歌人工智能AlphaGo以高比分击败韩国围棋选手李世石,标志着计算机博弈已经达到了相当高的水平,然而计算机博弈依然面临着巨大的困难。这主要表现在目前的博弈程序往往是针对二人对弈、棋局公开、有确定走步的棋类进行研制的,而对于多人对弈、随机性的博弈这类问题,至少目前计算机还是难以模拟实现的。

(2)机器翻译所面临的问题

在计算机诞生的初期,有人提出了用计算机实现自动翻译的设想,但歧义性问题一直是自然语言理解中的一大难关。同样一个句子在不同的场合使用,其含义的差异是司空见惯的。因此,要消除歧义性就要对原文的每一个句子及其上下文进行分析理解,寻找导致歧义的词和词组在上下文中的准确意义。然而,计算机却往往孤立地将句子作为理解单位。另外,即使对原文有一定的理解,理解的意义如何有效地在计算机中表示出来也存在问题。目前的自然语言理解系统几乎不能随着时间的增长而增强理解力,系统的理解大都局限于表层上,没有深层的推敲,没有学习,没有记忆,更没有归纳。导致这种结果的原因是计算机本身结构和研究方法的问题。现在自然语言理解的研究方法很不成熟,大多数研究局限在语言这一单独的领域,而没有对人们如何理解语言这个问题做深入有效的探讨。

(3)自动定理证明和GPS的局限

自动定理证明的代表性工作是1965年鲁滨孙提出的归结原理。归结原理虽然简单易行,但它所采用的方法是演绎,而这种形式上的演绎与人类自然演绎推理方法是截然不同的。基于归结原理演绎推理要求把逻辑公式转化为子句集合,从而丧失了其固有的逻辑蕴含语义。一般问题求解程序(General Problem Solver,GPS)是试图实现一种不依赖于领域知识求解人工智能问题的通用方法。GPS想摆脱对问题内部表达形式的依赖,但是问题的内部表达形式的合理性是与领域知识密切相关的。不管是用一阶谓词逻辑进行定理证明的归结原理,还是求解人工智能问题的通用方法GPS,都可以从中分析出表达能力的局限性,而这种局限性使得它们缩小了其自身的应用范围。

(4)模式识别的困惑

虽然使用计算机进行模式识别的研究与开发已取得大量成果,有的已成为产品投入实际应用,但是它的理论和方法与人的感官识别机制是全然不同的。人的识别手段、形象思维能力,是任何最先进的计算机识别系统望尘莫及的。另一方面,在现实世界中,生活并不是一项结构严密的任务。

4.人工智能的发展前景

(1)人工智能的发展趋势

技术的发展总是超乎人们的想象,要准确地预测人工智能的未来是不可能的。但是,从目前的一些前瞻性研究可以看出,未来人工智能可能会向以下几方面发展:模糊处理、并行化、神经网络和机器情感。

(2)人工智能的发展潜力巨大

人工智能作为一个整体的研究才刚刚开始,离我们的目标还很遥远,但人工智能在某些方面将会有大的突破。

①自动推理是人工智能最经典的研究分支,其基本理论是人工智能其他分支的共同基础。一直以来,自动推理都是人工智能研究的最热门内容之一,其中知识系统的动态演化特征及可行性推理的研究是最新的热点,很有可能取得大的突破。

②机器学习的研究取得长足的发展。许多新的学习方法相继问世并获得了成功的应用,如增强学习算法(Reinforcement Learning)等。也应看到,现有的方法处理在线学习方面尚不够有效,寻求一种新的方法,以解决移动机器人、自主Agent、智能信息存取等研究中的在线学习问题是研究人员共同关心的问题,相信不久会在这些方面取得突破。

③自然语言处理是AI技术应用于实际领域的典型范例,经过AI研究人员的艰苦努力,这一领域已获得了大量令人瞩目的理论与应用成果。许多产品已经进入了众多领域。智能信息检索技术在Internet技术的影响下,近年来迅猛发展,已经成为AI的一个独立研究分支。由于信息获取与精化技术已成为当代计算机科学与技术研究中迫切需要研究的课题,将AI技术应用于这一领域的研究是人工智能走向应用的契机与突破口。从近年的人工智能发展来看,这方面的研究已取得了可喜的进展。

人工智能一直处于计算机技术的前沿,其研究的理论和发现在很大程度上将决定计算机技术的发展方向。今天,已经有很多人工智能研究的成果进入人们的日常生活。将来,人工智能技术的发展将会给人们的生活、工作和教育等带来更大的影响。