![高等数学·上册(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/227/26179227/b_26179227.jpg)
习题1
1.求下列函数的定义域:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00062002.jpg?sign=1738833625-w6YRYft8y44B6y2utTHMlY7sNzxRPmqC-0-e438e48845c104b6927b305e6ec9e0b3)
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063001.jpg?sign=1738833625-FURwy1SeLTdiEMzc2MCnUGEiMQVqNRyn-0-14288bf02751a08236e47618359de22d)
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063002.jpg?sign=1738833625-gWxMbEDbkkeUGarqV64x5rtDmG35anDi-0-015582b832b43101ea8af8745b0113ba)
2.判断下列每对函数是否是相同的函数,并说明原因.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063003.jpg?sign=1738833625-QHt8qGopv32xlUiog9bNUXSjcNCgs06B-0-72e2da3e24cd1ece18f480a6233a6bbb)
(3)y=2lgx与y=lgx2; (4)y=sin2x+cos2x与y=1;
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063004.jpg?sign=1738833625-k7GWW3rYC0XRJxRwutJjlD3QfBzys5A3-0-0247063a95e1db5a82678051ff06f5b7)
3.指出下列函数的复合过程:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063005.jpg?sign=1738833625-spBv8hELZD2Gd1CnpTkvQwuwvsA49CZm-0-152d7b9b85997746561c7c2d1cbc3b93)
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063006.jpg?sign=1738833625-fqmItYjxvFVE2vhz8VSwTUu45XotPJJd-0-671fd881d5f5f84d284f2d607a73aa01)
(5)y=xsinxlnx; (6)y=lnsin2x.
4.判断下列数列的敛散性,若收敛,求其极限.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063009.jpg?sign=1738833625-ec6biXWArFUYTNQj0PCiZGtuOLPHsbV1-0-a4b4734d4eab1d974ef89a3fb46a20cc)
5.求下列极限:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063007.jpg?sign=1738833625-ESlbq8ewON5PXKHgtyFENjUsvibaXJxU-0-928e21129bfe72a1b1cbca5fa4a92834)
6.已知,求常数a,b.
7.设
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00064001.jpg?sign=1738833625-u87qKZwAR4Sg6YCbP3tCwkqSOtpITlKZ-0-5cd67e34a6f77f01b5e91de0bf5411c3)
求:(1) ;
(2)f(g(x)),.
8.求下列极限:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00064004.jpg?sign=1738833625-EGyxoymsdMeNezW8TkqQO75lIcm8eRhs-0-907cb51f86d7328e245e171327afe6d7)
9.设a1=10,,试证数列{an}极限存在,并求此极限.
10.证明
11.设函数
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00064007.jpg?sign=1738833625-8hmtDtpyOql44NIHW3XhIViBIXCDHAeD-0-e1f0420ebe4043001789e120d55db827)
讨论函数f(x)在点x=0处极限是否存在.
12.证明无穷小的等价关系具有下列性质:
(1)α~α(自反性);
(2)若α~β,则β~α(对称性);
(3)若α~β,β~γ,则α~γ(传递性).
13.求下列极限:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00064008.jpg?sign=1738833625-8rmmvFqg3dBam0j2EZS59iChgj8pS3iJ-0-73194e2216df71cb7e45ba7da15c59a7)
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00065001.jpg?sign=1738833625-XgsuaHpVTNYjdTP2exDjS4dpzV1Z5IAh-0-e73d1683840158653e4628776a820da4)
14.当x→0时,(tanx-sinx)与xk是同阶无穷小,求k值.
15.求函数
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00065002.jpg?sign=1738833625-WyfRYA1zR0LwjXsDIA71UZXQKxcATfdG-0-58ad6efb85c34d8c900f2d6034f69fbb)
在分段点处的极限.
16.求
17.确定常数a,b,使.
18.已知为有限数l,求常数a,l.
19.已知
20.设.
21.已知,求常数a.
22.求下列函数的间断点,并判断其类型:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00065009.jpg?sign=1738833625-7XZrRFA2V8BEg26CRZY3W8g1cP4riKwQ-0-945f18c91cedb29293c1b77c7a47b541)
23.设函数,求函数f(x)的间断点,并指出类型.
24.讨论函数
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00066002.jpg?sign=1738833625-z2gZmbyKqHz2MP9idR6trU7KJhb6qu8Z-0-bc44857b7c1ff5cf98d7ac129e9da9b3)
在点x=0处的连续性.
25.设函数
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00066003.jpg?sign=1738833625-pCkxr8ScyjOIKsZxo6PAVsaFtyc0OIMx-0-e201c25ee0b402eaa24f068061db4da2)
确定常数a,b,使得f(x)在点x=0处连续.
26.(1)设,证明
,并问其逆是否成立?
(2)设f(x)在点x0连续,证明|f(x)|在点x0连续,并问其逆是否成立?
27.求函数,并确定常数a,b使函数f(x)在点x=-1,与x=1处连续.
28.证明方程x·2x=1至少有一个小于1的正根.
29.设函数f(x)在[a,b]上连续,且f(a)>a,f(b)<b,试证在(a,b)内至少存在一点ξ,使得f(ξ)=ξ.
30.设函数f(x)在[a,b]上连续,且a<c<d<b,证明:
(1)存在一个ξ∈(a,b),使得f(c)+f(d)=2f(ξ);
(2)存在一个ξ∈(a,b),使得mf(c)+nf(d)=(m+n)f(ξ).
31.求证:方程ex+e-x=4+cosx在(-∞,+∞)内恰有两个根.