![高等应用数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/247/26179247/b_26179247.jpg)
上QQ阅读APP看书,第一时间看更新
1.4.2 第二重要极限
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035017.jpg?sign=1738883654-egDAwBqSKUslJpDIGI6csvkhCBxz9xcv-0-191eb4684448de8eb383f8a15cab12d4)
可以假设自变量x取正整数n,计算出相应的函数值,列表进行观察来理解第二重要极限(1-2).
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035019.jpg?sign=1738883654-qtamyrPkC2MHegxi6LoiFQcGUBuiyfT0-0-7374f283b4a5d5114158ae6146e79272)
通过观察发现,当n→∞时,→e,其中e为无理数,它的值为
e=2.71828182845….
与第一重要极限同样重要,要较好地掌握第二重要极限,必须认清它的特点.
发现:(1)函数 的底数、指数均有变量,称为幂指型函数,其中存在倒数关系;
(2)极限 ,当x→x0或x→∞时,□→∞,其本质为:
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00036004.jpg?sign=1738883654-NIJgHT01L2HmbjOhf2paaJUP3GgYD22c-0-879acced00f5c5e2be1610c643d338b4)
利用代换 ,当x®∞时,z®0,第二重要极限(1-2)又可以写成
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00036006.jpg?sign=1738883654-RFJtetFhWKLTpllt88PrOksv0dcHGnVf-0-5ca1c7f0df295ed8ded2c17e821e4aca)
(3)极限属于1∞型,以后遇到1∞型的极限可考虑是否属于第二重要极限.
例6 求
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00036008.jpg?sign=1738883654-FvpOC6Ai4LESQcteQDE462wPraNu4zML-0-d7aeeabef527c2fc975458a3b9e346f6)
例7 求
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00036010.jpg?sign=1738883654-Qn2useLReeaMSgnlPLQ6ZdRq3IagrFGW-0-2a8e07beb03f01f1f7ad94801179c419)
例8 求
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00036012.jpg?sign=1738883654-VaDLmj2IDgXfmOmxilsG9o58Fq5gcpvq-0-42cf591a9bc00f4b2918b277fc0c3123)
例9 求
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00036014.jpg?sign=1738883654-JI5rKwGmVgJ5fo8eKLurkfkreKhKIuvc-0-170085d69deda959dd39652d249d76c7)