![高等应用数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/247/26179247/b_26179247.jpg)
2.6.1 微分的概念
定义 设函数y=f(x)在点x0处可导,任给自变量x在x0处有改变量Δx,当Δx有微小改变量时,把f'(x0)Δx称为函数y=f(x)在点x0处的微分,记作,即
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00069008.jpg?sign=1738885825-JzYT4zVwt07zpISa4KKKoHQVvdhNSKnM-0-e9b5dc45019bf183a854b83870df95e9)
此时称函数y=f(x)在点x0处可微.
例1 如图2-4所示,一块正方形金属薄片受温度变化影响,其边长由x0变化到x0+Δx时,
(1)求此薄片的面积在边长x0处的微分;
(2)求此薄片的面积的改变量;
(3)求此薄片的面积在边长x0处的微分与改变量相差多少.
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00069001.jpg?sign=1738885825-l7QDIPUV86wKV8Ohtx1RQRWYo0TMXR0b-0-797cb20cd9179eb1a3bc79a71bf86de4)
图 2-4
解 此薄片的面积函数为S=x2.
(1)由微分的定义,得在边长x0处的微分
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00069009.jpg?sign=1738885825-Oh96BJ1O3qXJ1SdPet5cWWHt7frAUUES-0-1b5f59391f7d22fb755840ef63a2a71d)
(2)边长由x0变化到x0+Δx时,此薄片的面积的改变量为
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00069002.jpg?sign=1738885825-YwvUFvJH1sYYNubOhSsIIULDiQilVeja-0-b452dca52a06bb744e54847f5e23d4cc)
(3)薄片的面积在边长x0处的微分与改变量相差
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00069010.jpg?sign=1738885825-n6GqsjZGpIP0SM8ak9teUVn88P2DUSlX-0-36826f6d7a0582851bc33677472a2d90)
在例1中,如果x0=3,Δx=0.01,ΔS=0.0601,,它们相差0.0001.
一般地,随着Δx的绝对值越来越小,即当Δx→0时,Δy与dy之间是什么关系?它们相差多少?对此有下面的定理:
定理1 若函数y=f(x)在点x0处可微,则当f'(x0)≠0,且Δx→0时,Δy与dy是等价无穷小,即Δy~dy.
证明 因为函数y=f(x)在点x0处可微,则
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00069011.jpg?sign=1738885825-CemCPXSPkbFkGY4awL8WuMbHMOv2sZL7-0-64d85ee651f69ff55d78ccc49e6df5d5)
且函数y=f(x)在点x0处连续、可导,于是Δx→0时,Δy→0, ,即它们都是无穷小.
又因为f'(x0)≠0,所以
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00069003.jpg?sign=1738885825-YyuvJwHGDa4yb1gV7jhqvSHZXej70tv8-0-ee6246aeeb088d40966a9db4b91e372d)
则Δx→0时,Δy与dy是等价无穷小,即Δy~dy.
定理2 若函数y=f(x)在点x0处可微,则当Δx→0时,Δy-dy=ο(Δx).
证明 因为函数在点x0处可微,所以函数y=f(x)在点x0处可导,则
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00070001.jpg?sign=1738885825-17eAMP8w1cI1JdJFrzgkJD9PR0XSDXY7-0-2ec687caca1de861974dc771988eb7b7)
根据具有极限函数与无穷小的关系,推得
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00070002.jpg?sign=1738885825-8vqaC8NkISM735W2UxRiYxItiabpSeDq-0-909d908cf1bf73146b7131f9d859fe30)
Δy=f'(x0)Δx+α(Δx)Δx.
移项,得Δy-f'(x0)Δx=α(Δx)Δx,
且 α(Δx)Δx=ο(Δx).
将 代入上式,得
Δy-dy=ο(Δx).
发现:(1)因为当Δx→0时,Δy与dy是等价无穷小且Δy-dy=ο(Δx),所以Δy≈dy.
(2)当y=x时,由函数微分定义,得dy=dx=(x)'·Δx=1·Δx=Δx,则称自变量x的改变量Δx称为自变量的微分,记作dx,于是
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00070007.jpg?sign=1738885825-aSepXvb2GIIqzrrE22NekLWh830957e6-0-d7f3ba1b58d49d6157deb45765eb222b)
若函数y=f(x)在某区间内每一点都可微,则称函数y=f(x)在此区间内可微,且dy=f'(x)dx.因为dx≠0,因此,所以,函数的导数是函数的微分与自变量微分的商,简称微商.