![数学分析新讲(第3册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/665/26831665/b_26831665.jpg)
§7 恰当微分方程与积分因子
微分方程式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0027_0193.jpg?sign=1738886499-UAs6R1Nf33KH6Hzi3RK5uyr7a5x982n1-0-b22ee03fff315cd7b573b9c1f1948329)
可以改写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0027_0194.jpg?sign=1738886499-fxthmuf6dAmU41kpGXI5tKoRc99O2JRi-0-df8a78d9b01a18e51630d9cc7f6bd9ff)
这种写法的更一般形式是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0027_0195.jpg?sign=1738886499-jFQR0B35R5yilszsjHrZNkjy7xstjSj7-0-f3a22359765bc7f0a9e5d564631cff86)
将一阶微分方程写成这样的形式,对于探寻初等积分方法,有时比较方便.
7.a恰当微分方程
首先考查这样的情形:方程(7.2)的左端是一个恰当的微分式.我们把这样的方程叫做恰当微分方程或者全微分方程.对这种情形,存在连续可微函数使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0196.jpg?sign=1738886499-1k6booFSdaRXBYa1H46ea9ABBzzuI97J-0-9aec4dc69714555e353a7881268b862c)
于是,方程(7.2)的任何一个解y=(x)必定使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0197.jpg?sign=1738886499-SBWPdFIF0dBHV8Rx6HFrbiE3jVsXocBK-0-eddcfce21521b26c8b52bc726c8abef3)
因而满足
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0198.jpg?sign=1738886499-DQkFUgiVKkLiNBOtMGXnbzDVA6YmlpzD-0-d778df80e5a868309dcdaf9cae97afca)
——这里C是常数.反过来,由于(7.3)式,任何满足(7.4)的连续可微函数也必定满足方程(7.2).我们求得了用隐函数形式表示的方程(7.2)的一般解
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0199.jpg?sign=1738886499-jW2Ezr2T9pCv85pjlpGrT3u85zLXLtt3-0-0dcab46ab3cbcb5ba7f1972fa83ca11d)
这里C是一个任意常数.像这样的用隐函数形式表示的解,通常叫做“积分我们得到以下结论:
定理1 恰当微分方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0200.jpg?sign=1738886499-noFwxWmxGsX3XvIllbkiup71kokn4ayB-0-f0590e835e70566a0818985999500ead)
的通积分为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0201.jpg?sign=1738886499-oi6TXokLPouhIXrFkYf1RGxZKaE5wfqS-0-03de402dd9f8ceab7deeb879fba2ffab)
这里U(x, y)是方程左端微分式的一个原函数,C是任意常数.
上节中的讨论,实际上已经解决了以下两个基本问题(特别是对单连通区域的情形):
一、怎样判断像(7.2)那样的方程是否恰当微分方程?
二、如果(7.2)是一个恰当的微分方程,那么我们怎样具体求出方程左端微分式的原函数?
因此,恰当微分方程的求解问题,可以认为是已经解决了.
具体求解的时候,常常可以通过观察直接写出原函数来.要做到这一点,需要十分熟悉微分的运算法则,并善于将微分式分组.请看下面的例子.
例1 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0202.jpg?sign=1738886499-t5liYjOIYfLoRg6LstlOyCcHfBQbkIES-0-2c0970eaef39be6b439962e71f27a162)
解 将方程左端的微分式分成两组:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0028_0203.jpg?sign=1738886499-nLrrBV55u5yaqcHqVCBAmYPDQCLq5Fqs-0-ba293f77ccf35badc1bd3c68c6d439ca)
很容易看出:第一组微分式的一个原函数是x ey第二组微分式的一个原函数是y2.因而原方程左端微分式的一个原函数是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0204.jpg?sign=1738886499-GbzSvIKAwyRowM3wKL4SicBGRW7DrikG-0-6f61a958a6e129661ca59360da6fd232)
原方程的通解(通积分)为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0205.jpg?sign=1738886499-2b4JOYWfnYKNTcjORW58IfLOPEUz5pWN-0-46f87b727a96ec5f16c789150174bc1b)
例2 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0206.jpg?sign=1738886499-LymPVOOyCbHVAFkJ7M3GRbMWK07gBN3r-0-188eabc03453d76c662110a881a4592d)
解 原方程左端可按以下办法分组
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0207.jpg?sign=1738886499-Bs01qH4WVUAKoPa5mlthSXrWHs0G4CAN-0-a7203d9a2a418c24734c3bcf986dc42c)
容易求出上式的原函数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0208.jpg?sign=1738886499-1nGoO6zuqap9Hvmvcgk8N4VReXmdKuHC-0-5f3cf3b381ac92d622217ade132eca5e)
原方程的通解为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0209.jpg?sign=1738886499-G5wnN1IFqI9svxBjMbG4tOXnY1KjNepB-0-aded03c9f2c2fe13b6063a0939de993f)
以下一些公式当然是需要熟记的:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0029_0210.jpg?sign=1738886499-NmT0Hq4YKRd33JlakuFaqT0Y57fAesf2-0-c22cd4e8418ec3b8d35d6de98fa8e942)
应该指出,观察法求原函数虽然很省事,但这方法依赖于技巧和熟练,并不是每次都能成功的.另外,除了简单的情形而外,不容易一眼就看出方程是否恰当的.如果盲目去做,可能会误入歧途.因此,上节所介绍的恰当微分式的判别法和原函数的求法.是必须牢固掌握的.
7.b积分因子
恰当微分方程要求左端的微分式凑巧是一个全微分.这种情形并不多见.对一般的方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0211.jpg?sign=1738886499-tOQ5yosDoxBOL0JqlwKsfesI6EnOXa5O-0-7a0f22d53e7e0cab441129e305ad80a7)
我们可以用适当的非零因子去乘等号两边,把它化成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0212.jpg?sign=1738886499-JZZsXwODHYpynxGOVHxch2KXclRnubCM-0-4e97ad6e7c974c280f1ece8578b68207)
这里
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0213.jpg?sign=1738886499-AB0JzgQmCbZQtKFFL7ppXCeZeReaeddf-0-24ecbc9aa4e994d53ee8322d50cf541f)
如果这样得到的方程(7.7)是一个恰当微分方程,那么我们就说μ(x, y)是方程(7.6)的一个积分因子.
我们指出一个重要的事实:任何形如(7.6)的方程,都必定具有积分因子.但这一事实的证明,涉及到一阶偏微分方程理论,我们这里不能讲述.而且理论上的证明,只是肯定了积分因子的存在性,并没有告诉具体求出这因子的办法,对实际解题未必有很多帮助.下面将要介绍的,是求积分因子的某些具体办法.对于一阶微分方程来说,积分因子法概括总结了主要的初等积分法,因而给我们提供了一个很好的复习机会.
例3 可分离变元的一阶微分方程.
这种方程的一般形式为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0214.jpg?sign=1738886499-umgyqPABvFqx6wtHOgvSeT2Lbj0ezaZ6-0-90cd2d006bb17c6171fae03d58ac099d)
如果M2(y)N1≠0,那么这方程就有积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0215.jpg?sign=1738886499-NrDNpty4H403MgfwcQ0lbbbwvcPOT1in-0-cbdc56bf81df7ad48953095e27f31e06)
用这因子乘方程两边就可将变元分离:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0030_0216.jpg?sign=1738886499-QirZPvXnNAYFt9BVuGi4O1kqQTxXMBZM-0-e5067b7c10ba20f9a1cd0b6cf5c97095)
上式左端是一个恰当形式,它的一个原函数为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0217.jpg?sign=1738886499-YxpRfWkmQeFpfVNJl9JIRLmum5Dp2f3j-0-64c2961281e068ba6d19f5c0f0e66ed4)
因而原方程的通解为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0218.jpg?sign=1738886499-TDcDj9q8NOQMo15Fb1JwakG4BoN6Odny-0-16195a468c862da726763c4fc7ce3f21)
例4 考查一阶线性方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0219.jpg?sign=1738886499-DIa9ysVIKEUG0INpVRwK6ypzo0aDkdcG-0-525e9d6eb1fd585c0455ec3213e2de53)
这方程具有积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0220.jpg?sign=1738886499-RRnPmF6Bjatv8nvlVTOVgD4UIoXKH0GT-0-571d60759b6d49de46b8a0d125046c64)
以这因子乘原方程,就把它化成了可积分的形式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0221.jpg?sign=1738886499-39UGqw5BNnd0WVxFQ1PfMDrDWEbQndqV-0-9fc799b79b0e8e7dc0f6de4531279b33)
一个函数M(x,y)被称为k次齐次函数,如果它满足这样的条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0222.jpg?sign=1738886499-A4FLrzjyGyO2955uRIwpKnwKpiafIpS2-0-a342467250bca58f9fe6817e3854c6ca)
连续可微的k次齐次函数M(x,y)满足以下的欧拉恒等式:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0223.jpg?sign=1738886499-GaWSaRY3SGCQTxK2ZPrZhOztlJm1Rahf-0-7d0aba3372d2040494f9462be8cb60dc)
事实上,只要将(7.8)的两边对t求导,然后代进t=1,就可得到(7.9)式.
在下面的例子中,我们考查系数为齐次函数的微分方程.
例5 设M(x,y)和N(x,y)都是k次齐次函数,则微分方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0224.jpg?sign=1738886499-rriZQQToGNZJ02UeFPLg1QotK8kWjXor-0-adefd2cf4fd4da3caf8c2bcdc44876b8)
具有积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0031_0225.jpg?sign=1738886499-l3e9gdOqA4wdjxvTewzxpELm5jJa15hp-0-0234dcd8611a52583fd39a3fb390e614)
这里设xM+yN≠0
证明 首先,引入记号
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0226.jpg?sign=1738886499-AszLj7aymyR9IhohWcLXALOI3torg6xP-0-c4005db1d9c038f7a78301770f199eda)
我们来证明
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0227.jpg?sign=1738886499-JMBcNeERkjZh95S5pk0lFMKpRJ1pX6wq-0-7b8372898a511b8acc18a6ffc1beaf67)
计算得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0228.jpg?sign=1738886499-J4h8AZRCQNiGzAYUzSdRwecA4ZEEyXGG-0-8d93b36f0eaf946b55935f55534a739a)
所得两式相减,并利用恒等式(7.9),就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0229.jpg?sign=1738886499-TmuuTzXWJltiBuADFM1yl49CWpXNikUs-0-6895c0281a05dc00d98273818feab591)
因而,在任何单连通区域上,Pdr+Qdy都是恰当微分形式.
例6 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0230.jpg?sign=1738886499-0EczsJ9tljZ28xc67C3HDjdJKcTkfa8I-0-1884162e2574ec642210f749197138d5)
解 上面的方程可以改写为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0231.jpg?sign=1738886499-4t4u4ZjcWy24qO1Q9kiPUjuPU5UFEq5d-0-8f7d61f071d0db5204bb5924ef84fe84)
由例5可知,这方程有积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0232.jpg?sign=1738886499-DIpd2Rp5RGYnj8mG4ZC998DTXsXozdwg-0-5bba3b785f80485cc6068a28c50104fe)
下面,我们来求解恰当方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0233.jpg?sign=1738886499-DQ6JQ1nF2lXzHdbmkgr9JeRqmUM3RlAa-0-b8e10d6ce9d5880ced24232700d9f104)
这方程又可写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0032_0234.jpg?sign=1738886499-4n1QgyzA7TVEt2mXsDAhzorDEWOqt0FZ-0-64084d850778ede0f4f3ecdbd168aab4)
即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0235.jpg?sign=1738886499-1BtdTr86Nh8tr1zOmd8YA1BF0vztfzOX-0-50adb60d6aa9aef1344d9d3880ea5991)
积分这方程就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0236.jpg?sign=1738886499-99SS6rvXvdVPHiZUqMQAKDyXbM1W35Hk-0-92c956964c3e812a7e3948abc42a61a7)
也就是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0237.jpg?sign=1738886499-2GqFUqeXDdqPwIf53JKC9YE6qC9MSI3J-0-95185cd1b71f7e4160e4853402341bc8)
实际解题时,常常用到分组求积分因子法.下面,我们就来说明这种方法.
设是微分式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0238.jpg?sign=1738886499-DlOgpg8AKmFggcv5iSzaYzHLotEXZKjp-0-b507c89a10285817a99226f407954119)
的一个积分因子,并设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0239.jpg?sign=1738886499-glifnWNnUTVa1iEoswQLoDumwavdqCD0-0-685b843ac86392db2b36d62fcc71dde3)
如果φ是一个一元连续函数,它能够与函数U复合,那么
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0240.jpg?sign=1738886499-BEJT0lf9RAeTFyFfSEY0fTtPUesSCXdZ-0-fc5e0367bd8b07aad1ac7645c527ff17)
也是微分式(7.10)的一个积分因子.事实上,我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0241.jpg?sign=1738886499-WDvBC6LxlyKPdDWOJM2rzhRd5OXr0QXV-0-58e2fc24916edc240ca33a7f51fbf1a3)
这里Φ是φ的原函数.
我们来考查方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0242.jpg?sign=1738886499-COjXlwJhyUbnOEL8PsdQYHAxJLLhT4fu-0-da2300dda8c05f9ff1155f5e051227fb)
设这里的两组微分式分别具有积分因子μ1和μ2,并设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0243.jpg?sign=1738886499-QFTMPEF3AaljveWAm8Src1xH5VosM67I-0-23474aa36c19e3281ae2ed353da62c92)
如果我们能选取连续函数μ1和μ2,使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0244.jpg?sign=1738886499-pmG2uQuL4XRHVwzC0TN6qSNP5woiyGjY-0-9e29804634e5c05bcdcaaf30e7bc0fbb)
那么
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0033_0245.jpg?sign=1738886499-qaxFyDa0fpnE3Iq33DoIsLG65nFcc88v-0-4543c03c4b5049f321a11e9647e5c856)
就是两组微分式共同的积分因子,因而是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0246.jpg?sign=1738886499-PKEPZpVbMvxOcip3xjkadohcB7t0xXEj-0-07503ef3dc84fd12e74fab213bf91a97)
的积分因子.
实际解题时,采取灵活变通的做法,往往能更快地凑出积分因子来.
例7 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0247.jpg?sign=1738886499-XE9C8dizVmzngPDYHMhBduU1uVByJjFj-0-17cbc6891823fbc4c20f92689c1b1576)
解 将这方程改写为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0248.jpg?sign=1738886499-F6JRBheCrB2V5kScB4eXQTJ8RxpkfUsw-0-14c3ac4a7befb616570629af320053fa)
很容易看出一个积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0249.jpg?sign=1738886499-D9POysQXIWv8kB8orWVwfdmRiz3BSoh1-0-c96ff1595e39ded6bf02cdf78c8663c1)
用这因子乘方程两边,就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0250.jpg?sign=1738886499-nDB4OHQPwxsmiwoC8FsCw0NWSLZjUOhX-0-04b33c9edcdd821f2e8a0a505e086040)
我们求得原方程的通解
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0251.jpg?sign=1738886499-JFiwKmThmzddARog1FIT2Fd5edm0pFmx-0-e9cb5495effd67bcdfc5003a737b8c4a)
例8 求解方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0252.jpg?sign=1738886499-wUIMDlaCM03zmTqk4jLoHgGATb22zspl-0-352d8c000a470a5181c6dc02aa1c7eae)
解 这方程可改写为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0253.jpg?sign=1738886499-OYuQPbQvCrqiuSTAhUoOxczjzMg7tANR-0-aa636a3023c9eec0b5b1cf9d8ef2c210)
形状如φ(xy)的函数都是前一组的积分因子.我们选择φ以使φ(xy)也是后一组的积分因子.容易看出,只要取
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0254.jpg?sign=1738886499-JXskDmuO8GNvYffKSRRm55LYEr2uH9OL-0-60ab22dd2697e5613a27e292bc08a786)
就能达到目的.以因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0255.jpg?sign=1738886499-aY63BqgVzAm8VM3BLT3guWC0mFGUMRNm-0-eacdb17520a5e2c62c418dd75b8cd308)
乘方程两边就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0034_0256.jpg?sign=1738886499-ex3ZhcgS92tnPlQ6qOQPm6Gmt7vAoibi-0-94a5b0b3119f42be3c08efd7311b110c)
积分得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0257.jpg?sign=1738886499-xRM3riW0hPoaMyVopUvgsHKeHFsOPQEV-0-6998fa8486e16726e5cf5b7de9ebab38)
另外,因为我们乘了因子可能会失掉x=0或y=0这样的
解 经检验,x=0和y=0都是原方程的解[4].
例9 求以OX轴为旋转轴的旋转面,使得这样的镜面把放在原点的光源发出的光反射成平行于OX轴的光束.
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0259.jpg?sign=1738886499-67LJhOcz6NSgYl6mb41HN9SwLMOUytDv-0-56fd166fedd0fe596125744edf25a504)
图16-21
解 参看图16-21.根据条件应有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0260.jpg?sign=1738886499-Apg5cDMjxhkx9fTDP4wCOO54hBfLWmM4-0-b9ae8dc0e144cd1c07f66816955d72ed)
于是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0261.jpg?sign=1738886499-QXw580oVXPwNccS0Svld7sgjHZk9D5N0-0-05ea3f546671e1df8f0a2efedc4f4814)
但
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0035_0262.jpg?sign=1738886499-Xc3jUMy3QWYclk4cLe6v3ZL1MlwfmNlv-0-163fbbd34b212188a67f0bd1667fe391)
所以有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0264.jpg?sign=1738886499-NqugeNQ1K32hg1asD7LL044H4WlL9lZz-0-31bf551802a23525a954d51dfc91a74a)
解 这个关于dy/dx的二次方程,我们得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0265.jpg?sign=1738886499-2HcZ9olG4FbSk6IwJho16DKLosafRxpz-0-3bb3b6073dadcf98d586842c1a34b1d1)
由此得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0266.jpg?sign=1738886499-5GcIixhdg1P0Lm9DfpsDssbmWtyWnWVt-0-2ff74d8c19efdc03c469f0805b3ba7b5)
容易看出这方程的一个积分因子
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0267.jpg?sign=1738886499-qhFxHhwQa3fGcwMmTrYmePeYT8J7ziWv-0-c5ea18966b64a9c8a25ae181c866999e)
以这因子乘之,就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0268.jpg?sign=1738886499-Yi6MII5H35yfYFVXlYfN38mDSGd7UFlK-0-dd9d806f4a146df4c245fe48169e369f)
积分得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0269.jpg?sign=1738886499-HUBNOF9jhBPEpr7dLYAJf13lyXdBLIni-0-7c72b4d9855dd364781a9d9c94ca33f0)
由此得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0270.jpg?sign=1738886499-dPPK3GgXtFBe8fm5uKBlUSyQF0sLPng8-0-e15504ba28c908c0385bc8e3da8dc6dd)
即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure_0036_0271.jpg?sign=1738886499-Sjcy3tK6lfsPFCfK8l9WurdrQhk5YeOA-0-6eb908df18f9d494e6c6805b579762be)
这是以原点为焦点的拋物线族.在学习一元函数微分学时,我们已经知道拋物线具有这种光学性质.现在,我们又证明了逆命题:具有这种光学性质的曲线只能是以上抛物线族中的一条抛物线.