![数学分析新讲(第3册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/665/26831665/b_26831665.jpg)
§1 曲线的切线与曲面的切平面
l.a曲线的切线
考查R3中的一条参数曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0005_0004.jpg?sign=1738887958-clkgaVFeb9nlEoSTWWfuhW9L0aHR6lkF-0-3b8ae1bd7432c2e19d71d08368789da6)
在这里,我们假设函数x(t),页(t)和Z(t)都在区间J连续可微并且满足条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0005_0005.jpg?sign=1738887958-1BuwLQMYDGREZY0ZRRJ6X6aitLYZGaK1-0-f356c1d93e9c58822ad9a7d3d2962035)
如果把从原点(0,0,0)到点(x,y,z)的向径记为r,那么参数方程(1.1)1可以写成更紧凑的形式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0005_0006.jpg?sign=1738887958-pRV3jyq1I0m7VkwrikpLbeCM5Hc25PSp-0-c0f1edf6f9ef719b9c48829585e9125f)
这里r(t)=(x(t),y(t),z(t)),是连续可微的向量值函数,它满足条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0005_0007.jpg?sign=1738887958-XGaKN8FWi0fv5rw4k44eP3oVk54UWfgv-0-781012bf016c7702d82169f6aedc7627)
当然,(1.l)l与相应的(1.1)2本来是一回事.在以下引用时,我们就不再加以区别了,都编号为(1.1).同时,也就把(1.2)1和(1.2)2都编号为(1.2)。
设P0是曲线(1.1)上的一个定点(其向径=r(t0)),而P
是同一曲线上的一个动点(其向径=r(t)).我们来考查沿着割
线P0 P方向的向量
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0005_0010.jpg?sign=1738887958-sK3OAm7SDcqdiL3zv6jDsjRgPHYeTTFx-0-3df564614ab590513c9f68edb3637da9)
当t→t0时,割线P0P的极限位置应是曲线在p0点的切线.这样,我们求得曲线在给定点沿切线方向的一个向量
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0006_0011.jpg?sign=1738887958-3LwHb7s5lkdd9oJkPcqvRZjcGzBue9KJ-0-e1a0c9750fcf10f8261b505016ff6b7c)
于是,曲线(1.1)在P0点的切线方程可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0006_0012.jpg?sign=1738887958-og3lim5vN2rdha5ccyYfa9ykJKjC2o8M-0-fbff52e70cfa47b22ea5b0d14be6544b)
这里x0=x(t0),y0=y(t0),z0=z(t0).
显式表示的线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0006_0013.jpg?sign=1738887958-eoDXIekzJ9DuIY5XIl7BUbGLh3AvudZQ-0-51c1666d57755e656aeb9391f7a79b0b)
可以看作参数曲线的特殊情形——以工作为参数的情形;
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0006_0014.jpg?sign=1738887958-WqKTxapZtAthKDZtu9C8a1mmNUaOmDVW-0-63a4c455c1e9c5defea72d29f7c1823f)
对这种情形,切线的方程可以表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0006_0015.jpg?sign=1738887958-qMmT0qDZaIciJz8r9BHc1OMad9qNHnEd-0-900c5363fa47ed32e26ba064893acab3)
或者
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0006_0016.jpg?sign=1738887958-wGRvpWk9CMLz6U47kEVyXNJGrFoX2nZZ-0-d02957c83ce444a28e6e58d1e4815843)
这里y0=y(x0)z0=z(x0).
再来看由隐式给出的曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0006_0017.jpg?sign=1738887958-NaQMYww3DKHlJB8liqjYkynHKcs2mEpv-0-c6b9a7f3cf7b1bc90dcd11403ced5c76)
这里假设F和G都是连续可微函数,并且
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0006_0018.jpg?sign=1738887958-baAHkP0fVkUPOVS88cVFlkWe5gIeStWP-0-920e8fbc8a4514d2367f6eda135fecf5)
于是,在曲线(1.7)的每一个点(x0,y0,z0)邻近,我们总可以解出某两个变元作为第三个变元的函数。这样把曲线的方程写成显式形式,然后套用(1.6)或者(1.6)'写出切线方程。但以下的讨论更有启发性:我们来考查方程组(1.7)在点P0(x0,y0,z0)邻近的一个参数解
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0007_0019.jpg?sign=1738887958-jlbWpsXtHpBZ82gOIyGAToDBLsS5yKP2-0-d2ee83a270bfe83bb315d882ccd0bbac)
——这样的参数解一定存在,因为显式解就是一种参数解.把参数解,x=x(t),y=y(t),z=z(t)代入(1.7),就得到恒式等式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0007_0020.jpg?sign=1738887958-r6bJouDvUcit79lDlXYVZXBZkCSobaMn-0-3f64110e0a9a064c0d70be852fb45a96)
在t=t0微分这些恒等式,就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0007_0021.jpg?sign=1738887958-hXhAqzyZZjiFSY44psAbidmUpGkmjEZs-0-94f3b25a86c132fc0ed61fa10822f51c)
我们介绍一个很有用的算子符号:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0007_0022.jpg?sign=1738887958-7UsWkfnSQJyC7KiSHM0pKeQyXEKu04Wt-0-c3f12993edaba05f5ad851e25da55d9c)
这里的i,j和k分别是OX轴正方向,OY轴正方向和OZ轴正方向上的单位向量.这样定义的算子▽,被称为奈布拉算子(或奈布拉算符)。在点P0处,奈布拉算子▽作用于一个可微的数值函数F(x,y,z)产生了一个向量
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0007_0023.jpg?sign=1738887958-mZpoB7zvjaoFptaK7TQ5trcv5mue4Pcf-0-a5a68a8e7793a10e1482c178ff790894)
利用奈布拉算子可以把(1.9)式改写为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0007_0024.jpg?sign=1738887958-jJbvGRdKpcPHUkSAhtiFLd0tIbszTfyK-0-f3ad326afab5a60c887a4857af553292)
这就是说,曲线(1.7)在点P0的切向量与两向量(▽F)p0和(▽G)p0正交.因而这切向量平行于
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0008_0025.jpg?sign=1738887958-UOCyX1fug4gL50WERBv3qTt5RMCDeagX-0-7170579cfd8905db496604f42b34201b)
据此,我们写出曲线(1.7)在点P0的切线方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0008_0026.jpg?sign=1738887958-5JczSr7lFVSxOLxNMtIvZKtUWHz99cb4-0-2e0750ccab2d00a2c2ed81506e753ce1)
平面参数曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0008_0027.jpg?sign=1738887958-lmHZsb2oKKqhvplGnUhNZZK8mQojiWNO-0-6691267d40a1d17432f4396bdd98e62e)
可以看作空间参数曲线的一种情形:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0008_0028.jpg?sign=1738887958-P4Dq1V66ZRYjDOrdoHMEB8wBSPzxsRiA-0-a5914cc1fa8732c381d889ad793ee0ac)
因而,平面参数曲线的切线方程可以写为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0008_0029.jpg?sign=1738887958-tey7JzedpgL05fkWn51V1rJBvgJDQkrn-0-dc2f93e82f29c407e20723910919de5b)
类似地,平面显式曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0008_0030.jpg?sign=1738887958-1UC51DzDnb8nBJkMNXIuIoJLzqPlOihB-0-4c8107162ddb73d1ed686e0267160b99)
的切线方程为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0008_0031.jpg?sign=1738887958-WiAfd0n1eUXbfQpj6XbbZCvBSzlCUG4c-0-0d471523b6cc612909e40635b48c781b)
——这结果当然是大家早已知道了的.
隐式表示的平面曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0008_0032.jpg?sign=1738887958-ThyUmtKaCmwV8IcWt8qO7lynBmfsLk4L-0-b73d87bf445c94660bcfd3f1c07b1214)
可以看作这样的空间曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0008_0033.jpg?sign=1738887958-APv9oofofFj9yKA5ybmbZhzgIVj06Tfq-0-28e5a28f9adf46e4958e59beeff0369f)
这空间曲线在点
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0009_0034.jpg?sign=1738887958-G2JkbZN0W9cHVwLMMjSWu0BsbBWKjaxv-0-1ec187e8727f95f8b8009a29ae084d14)
的切线方程可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0009_0035.jpg?sign=1738887958-TpDXqdLKR5ADYx4q4hx4nzEJA6v3ZezI-0-51c8762d71ebbae5ab99b158977e6c16)
也就是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0009_0036.jpg?sign=1738887958-uFNWUPo3GiZrVl4FTGCyC6LLFLFqiX4D-0-95a7dc5f39d11dda26c35c292c28a09f)
1.b曲面的切平面与法线
空间R3中的一块参数曲面表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0009_0037.jpg?sign=1738887958-q9M3rvGOvqcTFj49fJzliSv4AGa46t93-0-944c60a81f7f58012e84f91714c2ec33)
这里,设△是参数平面上的一个开区域,设x(u,v),y(u,v)和是在△中连续可微的函数,并设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0009_0038.jpg?sign=1738887958-a8bLQX64mrQ46CqLRvfOgAtMSyrc0Fwu-0-717b1276853b71c3246da3cfaca22d9a)
参数曲面块的方程(1.11)1又可写成向量形式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0009_0039.jpg?sign=1738887958-lcxP24yuQddplNnEPRb1ZMa9xwjiVlq9-0-1bdf2dea910d17adc03ebbb75c1e65ad)
而条件(1.12)1意味着
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0009_0040.jpg?sign=1738887958-60RTYlujoLjeSCVqqmxR8LmuCqfCHsxZ-0-08a0a98fef670d81cc3faf36a579d0e9)
在下文中,提到(1.11)时,指的就是(1.11)1或者(1.11)2;提到(1.12)时,指的就是(1.12)1或者(1.12)2。
设P0是曲面(1.11)上指定的一个点,其坐标为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0009_0041.jpg?sign=1738887958-C560wjZHqysI1yA2Ao4IpG6RpgQ9ZvC4-0-600593d7cb80ee198737830c76156118)
又设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0042.jpg?sign=1738887958-etk9Pyi1hhDRvIYl8JOfK9gCYwvP6B18-0-b79a4453e59abf87fddc66fd1c35895e)
是参数区域△中的一条连续可微的曲线,它满足条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0043.jpg?sign=1738887958-1E9msVdJ8oW9r7iyv7H1bnv3lx3L71Dm-0-4ee2e6e3e492fd0bd572eee786b6408d)
我们来考查曲面(1.11)上经过点P0。的连续可微曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0044.jpg?sign=1738887958-FDIhqGh7oB6pLHE17ntDNYmb6BeRcGOb-0-286ca34dd2d71e1d80e1e8ef14492c58)
将上式对t求导,就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0045.jpg?sign=1738887958-xazLBIRY1q1IM2nzIls5EHYWCbYoW2EV-0-aef6d3daae370552afd221364fc98447)
由此可知:任何一条这样的曲线,过点P0的切线都在同一张平面上.这平面通过点P0,并且平行于向量
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0046.jpg?sign=1738887958-9kgR6TcJk2OFGwCKiEYkQqVASi5dGnGm-0-1d5cc7476a6dfe1fa009ba7760f70bee)
我们把这张平面叫做曲面(1.11)在点P0的切平面.切平面上任意一点P的向径
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0047.jpg?sign=1738887958-TuQIFgOQejiwws0MvtknTU9Akp6u546c-0-c337419cb5f4a306787dda1f0c62ecb3)
应满足向量方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0048.jpg?sign=1738887958-USiY8V2jg8welgSAnr8tuqsY7WHAKo0m-0-ba9044433f598afa88b884111ef7b101)
据此,我们写出切平面的方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0049.jpg?sign=1738887958-m40ewTmVCk7t0gczXvebIW4rMMvzD9wg-0-1c745f2dfe71e014b37a08b3e998b125)
过切点并且与切平面正交的直线,称为曲面在这点的法线.根据上面的讨论,我们得知:法线的方向向量为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0050.jpg?sign=1738887958-4kr0n9jdezfEUwpMmUzJNYlZZm2pmjRn-0-641e36eee7e50ec6b2b691230f22c86b)
因而,法线的方程可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0051.jpg?sign=1738887958-zdzyMkChx5xQReG5KKhjmQyAuAI4SS9x-0-1f91ca76f6c152bdc62b28f4de9cbcb2)
显式表示的连续可微曲面
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0010_0052.jpg?sign=1738887958-h8JXWyUqxEvV4Dizx7AvwNdF2vt50fTh-0-4bc7d6a18c51682c6766402ebd6f68ac)
可以看成以(x, y)为参数的参数曲面:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0011_0053.jpg?sign=1738887958-BeMbdQbxdwC6kf9Woxssz4lsSqp29xAQ-0-39d290c39afe3240fda2a783204d39e4)
这曲面过点P0(x0,y0,z0)的切平面的方程可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0011_0054.jpg?sign=1738887958-mAjQEngiiehmZbBAtXyj8rW5wXR60PJq-0-cdfaf1a199b270590d51324377f5a4bc)
即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0011_0055.jpg?sign=1738887958-EowibGRzeG7bBaAT3nzrN3e5tDq3k1O4-0-6ad5499d5f8ef4ebe1e052340a5152ee)
曲面(1.13)的过点P0的法线可以表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0011_0056.jpg?sign=1738887958-c5NNkrWHFTRTUqnyxX35p7IU1gHd9JP3-0-9d936292d8d403c55a341475a42cafa7)
再来考查隐式表示的曲面
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0011_0057.jpg?sign=1738887958-BVmtISBvm06KAh5cP3NmrJmnholvXBUE-0-b120984ea0972e1168e6f6022840adc5)
这里设F是连续可微函数,并设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0011_0058.jpg?sign=1738887958-xvuTKs83Qsb1Hu76Y1PI6Lm2ths2wItY-0-63478c4aa052336346a0abd3fc9ef68a)
在曲面(1.14)上任取一点P0(x0,y0,z0),考查这曲面上经过这点的任意一条连续可微的参数奋线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0011_0059.jpg?sign=1738887958-7xcTDsHuZtldbdmBUyPGH30bWdB5shF3-0-9ad42b93cb1924d1e3194adeaac2499c)
我们有恒等式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0011_0060.jpg?sign=1738887958-yK74NSgcZfvwaBtv5eTsffvugNEKDHaH-0-3669acc09b44319a6792e33d9f32267c)
将这式对t微分,就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0011_0061.jpg?sign=1738887958-1JgfuYZCIKngeaMMN3arDCDt5JfSF2dX-0-ed33f7144d2773f3d32d760fa2d1233f)
由此可知,任何一条这样的曲线,在点P0的切线都正交于向量
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0062.jpg?sign=1738887958-zq25bFAEY9D3WEOwBbwvdCylJS1ofQyW-0-bcb6083c5e54ddf7470b5c25035c76b2)
这里,为书写省事,我们记
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0063.jpg?sign=1738887958-UJV1DmlBs9x7YPCQu4mUBQRQcRd3DL1u-0-54f13d62c6b98d16f28bdfe8b8478e53)
通过上面的讨论,我们写出曲面(1.14)在点P0的切平面的方程:向量形式的方程为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0064.jpg?sign=1738887958-i9B7xgn7jlX4vUJ7KstxJi2MUIhBcnh4-0-a57d5e3eb5468bc877f6acc765d43422)
坐标形式的方程为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0065.jpg?sign=1738887958-8tVaq7TxzW90d81hVmqjZ08hFfaLmldE-0-ba62feb06184c75f089fb7eafa5d9606)