![医用高等数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/549/31729549/b_31729549.jpg)
2.2 导数的运算
根据导数的定义,求函数y=f(x)的导数f′(x)可分为三步:
(1)求增量Δy=f(x+Δx)-f(x).
(2)算比值Δy与自变量的增量Δx的比:
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00032006.jpg?sign=1738835241-HNiQdQ4pERGrbkS7WGqVvWvwYmdbwELe-0-db0f1188445ed60d24f2e10d3f4c3bf4)
这个比值称为函数的平均变化率,又称差商.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00032007.jpg?sign=1738835241-lVBvpdDzj4zGLZ6nGd8s8Zo8OLVcdssJ-0-0bf8da9205dcfd554cd7de048b2fb9ae)
若此极限存在,则此极限值就是函数f(x)的导数f′(x).
下面我们根据导数的定义,求几个基本初等函数的导数.
2.2.1 一些基本初等函数的导数
1.常量的导数
设函数y=c,因对任何x,有y≡c,显然Δy=0,所以,即
(c)′=0
2.幂函数的导数
设函数y=xn(n为正整数),给x以增量Δx,由二项式展开定理有:
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033001.jpg?sign=1738835241-zkmyQR4uJZVtZk1s09XlWb0ubRko3ruF-0-1833cdb107625929f30aef8626772099)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033002.jpg?sign=1738835241-XbfzZ7do3ERcREgA3ipaggfcaCDtAmWO-0-23c0754ee6e7e8e6597dda307db96a92)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033011.jpg?sign=1738835241-TLTQ9xm2JFicim3z2mGPRpVn7IWGSTw3-0-084a08db95d851d522eb0f87f1dc107c)
即 (xn)′=nxn-1
当n=1时,上式为 x′=1
即自变量对其自身的导数等于1.
更一般地,对于幂函数y=xa(a为任意实数),有
(xa)′=axa-1
这就是幂函数的导数公式,此公式的证明将在后面讨论.
3.对数函数的导数
设函数y=logax(a>0且a≠1).
给自变量x以增量Δx,则
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033003.jpg?sign=1738835241-XyDLdnO49cJnOEY9eSKUBvXvoXNdQmu1-0-8e7cb093dbe1b718e5b28724cbe5bd51)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033004.jpg?sign=1738835241-anKL79hN5OCzpYsWnh3mHT35sCai8tIf-0-b62af286796fb093ec8f036ed69de4ce)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033005.jpg?sign=1738835241-n2cI1iD3JZIvI27PJzO7KGvLD0Q6tGkk-0-f802f02b0f31317654964661131b8813)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033006.jpg?sign=1738835241-gWHwLF5FQ9YjpaIGDKHeFqcWNn0uKhny-0-0a611619edb1c8921d64532fd5ab8bcc)
特别对于a=e,则有
4.正弦函数和余弦函数的导数
设函数y=sin x,给自变量x以增量Δx,则Δy=sin(x+Δx)-sin x,由三角函数的和差化积公式,有
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033008.jpg?sign=1738835241-W88QJ1YhktcXJrx1a2TpnCvfdsBpSVcK-0-5018e9814bbdbf9755539347f597124f)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033009.jpg?sign=1738835241-tf8yDL05JRn2WJE2wPjQnHlelXdgNCXX-0-d36f14b616854dc8d90cb7f864a19137)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033010.jpg?sign=1738835241-p8L2YGqqBEoAkurwei58dvmMeqst8S8I-0-82dcbb4307c10f06a844cc2baac35fdc)
即 (sin x)′=cos x
同理可证 (cos x)′=-sin x
2.2.2 函数四则运算的求导法则
设函数u=u(x),v=v(x)在x点处可导,即u′=u′(x)及v′=v′(x).
法则1 两个函数的代数和的导数
(u±v)′=u′±v′
证明 设y=u±v.给自变量x以增量Δx,函数y,u,v的增量依次为Δy,Δu,Δv有
Δu=u(x+Δx)-u(x)Δv=v(x+Δx)-v(x)
Δy=[u(x+Δx)±v(x+Δx)]-[u(x)±v(x)]
=[u(x+Δx)-u(x)]±[v(x+Δx)-v(x)]=Δu±Δv
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034002.jpg?sign=1738835241-lZNHh07aVHAhumd7lZyKurKOLdLEVd84-0-9bf6f338dbb062135f2035a7ae4c87b2)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034003.jpg?sign=1738835241-mOGoInOrIT0z1UqBpb520WUrfYb03Oxm-0-d053d8c2b911e0d6f7d9b7ecb2266518)
即 (u±v)′=u′±v′
此法则可推广到有限个函数代数和的导数情形,例如(u+v-w)′=u′+v′-w′.
例1 已知函数,求y′.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034005.jpg?sign=1738835241-q0hdPUNBJE5NM85ftcBkKN6zcIy32qxc-0-421e6d4546bf1d7b8868f514d46fe9f3)
法则2 两个函数乘积的导数
(u·v)′=u′v+uv′
证明 设函数y=uv,类同法则1有
Δy=u(x+Δx)v(x+Δx)-u(x)v(x)
=u(x+Δx)v(x+Δx)-u(x+Δx)v(x)+u(x+Δx)v(x)-u(x)v(x)
=u(x+Δx)[v(x+Δx)-v(x)]+v(x)[u(x+Δx)-u(x)]
=u(x+Δx)Δv+v(x)Δu
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034006.jpg?sign=1738835241-ioP1qea6lmaoiD5U82YMDLtCC7XsKOSn-0-0e06295c475aab737ae83993f3c70734)
已知函数u(x),v(x)在x点处可导,则u(x)在x点处连续,故有
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034007.jpg?sign=1738835241-dhjDN3lyOnYR1Ky415yJyaMiGNCUX3OB-0-c6f33c3679bc04094540ed51da3d206e)
即 (uv)′=u′v+uv′
推论1 (cu)′=cu′
推论2 (uvw)′=u′vw+uv′w+uvw′
乘积的法则也可推广到任意有限个函数之积的情形.
例2 已知y=ln x(sin x+cos x),求y′.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034008.jpg?sign=1738835241-txe8WsZyjxvzaY6uPa6mBzYTaaZuBPC7-0-2fe6b6bafce841432b80bdafce36ef50)
法则3 两个函数商的导数
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035001.jpg?sign=1738835241-wVrBDXXcG7SZ02bJc5rTO406h6xHIXbs-0-bb4dc1250513a91490cc0c761f027788)
推论3
例3 已知函数y=tan x,求y′.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035003.jpg?sign=1738835241-u4IwoKHKrHsoqd6mILtEPxl4Llve9Nq9-0-7eb4903ee8bc4db2a76f184dc67c7241)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035004.jpg?sign=1738835241-87uHxoO371CYgWRRCAC3ORFAUhteHMtc-0-d5728e9b5ff3350e6242c61060324241)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035013.jpg?sign=1738835241-LOudFnjuowpBC1qmT3C8xtwpnCGlv6hF-0-1553b3a1d4cc46928e9bc6dbe3c4bcd2)
例4 已知函数y=sec x,求y′.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035014.jpg?sign=1738835241-if7ILdtodlUfd0gS79uffJqOmIwNVsSQ-0-be7435cc97b6bb091ef2dbb80fd6fa57)
即 (sec x)′=tan x·sec x
同理可求 (cscx)′=-cotx·cscx
2.2.3 复合函数的求导法则
法则4 (链式法则)设函数u=φ(x)在x点处可导,而函数y=f(u)在x点的对应点u(u=φ(x))处可导,则复合函数y=f(φ(x))在x点处可导,且其导数为
f′(φ(x))=f′(u)φ′(x) (2.2)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035005.jpg?sign=1738835241-gSUoF163PNnxSW0o6X0PPDJfvzyPX409-0-daf53bf67c37aca3292f8341e175e2a2)
证明 设x有增量Δx,则相应的函数u有增量Δu,函数y有增量Δy,因为
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035006.jpg?sign=1738835241-sVo9ig0SS7ehl1UGPaDHjgQTXRvycoEP-0-156e3b181dc92d4a363fb2a902c02592)
由于u=φ(x)在x点可导,当然在x点连续,故当Δx→0时,有Δu→0.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035007.jpg?sign=1738835241-qb1eDgXfflA5bpKjt9mdp44iraPdj1uc-0-53d76a5f9790d19a85c49a7760dd3c41)
此法则可以推广到多个中间变量的情形.我们以两个中间变量为例,设y=f(u),u=φ(v),v=ψ(x).则
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035008.jpg?sign=1738835241-GO7jeqNsra9INAoSBiJAzHbZWGvI274z-0-8e75725215f630684f5724d65c6e74c6)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035009.jpg?sign=1738835241-CEURO7F7Xc42uAVjsq1LumcQQjHhDShg-0-c34a989ac75202a524ad2e1c8f43c293)
故复合函数y=f(φ(ψ(x)))的导数为
例5 已知函数y=sinln x2,求y′.
解 令y=sinu,u=lnv,v=x2,则有
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035011.jpg?sign=1738835241-qYfEIhF0ABZ95jlc6fa73IkvZBewqrME-0-795d3aef6fa7e6cf947802c985ea80c9)
例6 已知函数y=sin8x,求y′.
解 令y=sinu,u=8x,则,
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036002.jpg?sign=1738835241-3tMxiXM8jRoMfLvZEJOd3sRuguI3py3l-0-0e92f8b336e48440471a8756ca44daf6)
对复合函数的分解比较熟练后,就不必再写出中间变量。
例7 已知函数,求y′.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036004.jpg?sign=1738835241-9ZYz8DZxb2RqAnT1IOL7cqQiRrxL0z5D-0-e00f2f946e4643ee638c32bdb2b2a9c1)
2.2.4 反函数的求导法则
为了讨论指数函数(对数函数的反函数)与反三角函数(三角函数的反函数)的导数,下面先研究反函数(inverse function)的求导法则.
法则5 如果函数y=f(x)在某区间Ix内单调、可导,且导数不等于零,则它的反函数x=φ(y)在对应区间Iy={y|y=f(x),x∈Ix}上可导,且
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036005.jpg?sign=1738835241-xP5A0J1MNyfzJRS9VVoBlEjZnsMWUfh8-0-e38f576735ae843cf1ac46021e8672ad)
此定理说明:一个函数的反函数的导数等于这个函数的导数的倒数.
证明 设函数y=f(x)的反函数x=φ(y)在y点有增量Δy,且Δy≠0,有
Δx=φ(y+Δy)-φ(y);Δy=f(x+Δx)-f(x)
当Δy→0时,有Δx→0;当Δy≠0时,有Δx≠0,则
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036006.jpg?sign=1738835241-NkOjbAiDy94hZbWMpYZfwirjSF5bEuhH-0-9b9b0add8bef619c0d22989fc33ece62)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036007.jpg?sign=1738835241-0hLTKiorg1ZqygyR7zYn0C7cPIRSyKlB-0-38121491f30c3af74beaaa6b5bb23e2b)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036008.jpg?sign=1738835241-Td3Ua47B4V6UJeRUT19Yzy00dLyt5u0a-0-23633ec30e7f689f804d0a5066efd225)
例8 求指数函数y=ax(a>0,a≠1)的导数.
解 已知y=ax是x=logay的反函数,由
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036010.jpg?sign=1738835241-5GyFx7KT07B61qyhN4K1qLrpB3bMGtZW-0-fb09f4095f6a81be77de8619d0b25ba9)
即 (ax)′=axlna
特别地,当a=e时,有
(ex)′=ex
例9 求反三角函数的导数.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036011.jpg?sign=1738835241-AdEh5PAnMsBS67jv7jS2qBcJM73Lc1xA-0-835b5827cdf6dea89446af6eec93f47a)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036012.jpg?sign=1738835241-65yjsqxtPBwRRFV2xzgdFQy124Oa0nyO-0-d609c013f640c68254ffa5267815338f)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037001.jpg?sign=1738835241-ZFke9BnBPjjLCUnLrRLbNGEbXr8WHkmI-0-789bf4c7c2f83a14065a98386835fb19)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037002.jpg?sign=1738835241-BLwxcBvvkEPKaGA9cVVRgX6VZirQ7pxR-0-8d310a98ac14c3a9ff8f82ae62ad1016)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037007.jpg?sign=1738835241-o2FGoIkxHMDwFtLsYFfwagQcWg170vqj-0-bdc93001a3cce4f01ec3b921104da92a)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037008.jpg?sign=1738835241-KkmKPFKqs5b2W7wy4hdBYAJs407SOSjh-0-3eb9cd063fc6ce8fcb1636c154172ee5)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037009.jpg?sign=1738835241-7hISepHHOZb1MDIOSxfIIhsQ3bj8chTa-0-9f5e337adc6d7d16629d8d41baa7744f)
用类似方法可得
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037010.jpg?sign=1738835241-16jn751momMdmrjf4XNi2AsEHi7QUUky-0-49d491007c4a13b525e0f5676a0f9b79)
例10 求幂函数y=xα(α为实数,x>0)的导数.
解 由于y=eαln x,故
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037011.jpg?sign=1738835241-PgUcWLTdStcQ2XNLmllawyNU3B0eCG7B-0-f876869c3c59d02461ac0e126023de89)
即 (xα)′=αxα-1
2.2.5 隐函数的求导法则
前面,我们讨论的求导运算都是针对函数y能明确写成自变量x的解析式y=f(x),这样的函数,我们称为显函数(explicit function).但有时遇到两个自变量x,y间的函数关系是由方程F(x,y)=0所确定的,这样的函数,称为隐函数(imlicit function).
例如,x2+y2=1和exy-xy=0都确定了x和y之间的某种函数关系.
求隐函数的导数并不需要将y从方程F(x,y)=0中解出来,亦不需要引进新的法则,只要对方程F(x,y)=0的两边分别对x求导,便得到所求函数的导数.求导时注意y是x的函数,利用复合函数求导法则,便能得到所求函数的导数.
例11 求由方程y3+3y-x-2x5=0所确定的函数y对x的导数.
解 方程两边对x求导
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037004.jpg?sign=1738835241-6cnDPWrz6pxBgqQ2ZRDZkrFMKVcXwNYz-0-07605d9ec508d6b13145d7df4e397e21)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037005.jpg?sign=1738835241-ui49fWXYOOfAvLIh9eWTaQ8eGTN7W1hs-0-ad41081c2676d28308b3c4fb0d65b89c)
例12 求由方程ey=x2y+ex所确定的隐函数y的导数y′和y′|x=0.
解 方程两边同时对x求导,得
ey·y′=2xy+x2y′+ex
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037006.jpg?sign=1738835241-qSrAj0wgAWu6USzgB38KvDer0pRrqyQf-0-a2615b66d6edfbb9c7d829640b95e2f5)
当x=0时,由ey=x2y+ex得y=0,代入上式得y′|x=0=1.
2.2.6 对数求导法
将函数的表达式两边取自然对数,并利用对数性质将表达式化简,然后应用复合函数的求导法则,将等式两边对自变量求导,最后得出函数的导数,这种方法叫做对数求导法.下面通过两个例子说明这种方法.
例13 已知函数,求y′.
解 将等式两边取对数,得
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038002.jpg?sign=1738835241-MqBKeoX0LB4MIEg1cYnvG5q7bndIC9GZ-0-7c35afec5aed175edf831ed7778ae895)
对x求导,得
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038003.jpg?sign=1738835241-gEBX9oz1HGHXtH0UhCTFTNEBStIpjz2q-0-dfce4b6726379edaa14472eb418387d3)
例14 已知函数y=xsin x,求y′.
解 两边取对数,化为隐式,得
ln y=sin x·ln x
两边对x求导,得
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038004.jpg?sign=1738835241-p8AQyNQzCbqGfVUKvyTFPzGZt4BINvkS-0-3cba11e2a78ce16ae34952abbdf12042)
*2.2.7 由参数方程所确定的函数导数
当函数由参数方程
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038005.jpg?sign=1738835241-8UAkqotuPMgmw6MCXe3XyMtEy0uXNdP5-0-aef8f11a6e1e7151a01e7d42931e0e60)
确定时,在不消去参数t的情况下,可以方便地求出y对x的导数 ,过程如下:分别求出y对t的导数
,及x对t的导数
,即得y对x的导数
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038009.jpg?sign=1738835241-mVCL1Oyvvtf2GYBHHdaplKNGLTZyJ8vK-0-4960e85089be19b96dcdbec87e41c6b1)
例15 求由参数方程所确定的函数的导数
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038012.jpg?sign=1738835241-vltTHq50GxqpfZLGrM4ScKJsiayS5Ljr-0-7d45f4e42ca118e5420a7b06b35a3f8d)
故
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038014.jpg?sign=1738835241-keVjsvwDmLJqtgBAywyXhNoP4WWlnECk-0-936080a800cfd61644f406be1a0b9223)
为了便于查阅,我们列出基本初等函数的导数公式
1.(c)′=0(c为常数). 2.(xα)′=αxα-1(α为实数).
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038013.jpg?sign=1738835241-imF57eER2XySBUYYqeVBEImhTYcSOVQU-0-abd115df87afbf1324ca8d2a302c2e5f)
5.(ax)′=axlna. 6.(ex)′=ex.
7.(sin x)′=cos x. 8.(cos x)′=-sin x.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039001.jpg?sign=1738835241-i3cBNhuiXZ3TnLtVXh2NQFcSwCEUm708-0-638b7047b313d0ac4fcef548c02c55ec)
11.(sec x)′=tan x·sec x. 12.(cscx)′=-cotx·cscx.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039008.jpg?sign=1738835241-fIgXcOXsGCnFrswXCUJV8LKN3hToVhXs-0-193104889b2a6c9b639f6c6b60705942)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039009.jpg?sign=1738835241-XDqxSbFNW6ki6gg1gdEB2L07mubgpyIB-0-7d8da14bda062ee42ad5df27053bf984)
2.2.8 高阶导数
函数y=f(x)的导数f′(x)仍然是x的函数,我们可以继续讨论f′(x)的导数.如果f′(x)仍然可导,它的导数就称为函数y=f(x)的二阶导数(second derivative),记为
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039002.jpg?sign=1738835241-PPmWSIqgE04ADFbgdf6Yh775qqegM9Rl-0-9ed6562278fb9abee83129c4e7d8476a)
依此类推,如果函数y=f(x)的n-1阶导数的导数存在,它的导数就叫作函数y=f(x)的n阶导数(n-th derivative),记为
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039003.jpg?sign=1738835241-r9QUlaYaCOQvYKqsFKXyniopBXa3BJCh-0-0ad3490f87705f1b270a8bd03b245df5)
函数y=f(x)在x点具有n阶导数,则f(x)在x点的某一邻域内必定具有一切低于n阶的导数.
二阶以及二阶以上的导数,统称为高阶导数(higher derivative).
如物体的运动规律(函数)是s=s(t),则s(t)的导数是物体t时刻的瞬时速度v(t),即v(t)=s′(t).加速度等于速度v(t)在t时刻的导数,即加速度为s(t)的二阶导数α=s″(t).这就是二阶导数的物理意义.
显然,求一函数的n阶导数,只需对函数进行n次求导.因此,求高阶导数无需新的方法.
例16 求的二阶导数.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039005.jpg?sign=1738835241-zUP21KAoXT97Xs0CqFNO73qVRsxjlTJJ-0-c02c3cd4ba16699d15342a3db2732d7e)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039006.jpg?sign=1738835241-EMAWBQNl1TCuRhCerNArcQcdCp4TfV81-0-1d7e18bdeda927d254402cd2613fe768)
例17 求y=ax的n阶导数.
解 y′=axlna
y″=ax(lna)2
…
y(n)=ax(lna)n
即 (ax)(n)=ax(lna)n
显然 (ex)(n)=ex
例18 求y=sin x的n阶导数.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039007.jpg?sign=1738835241-fXOTkYtaHntr1uXXw42rS9ybKlywpAu9-0-1615db3f9d9246799097f46e980dd3dc)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00040001.jpg?sign=1738835241-C9cThpJF66xTFauumCzkcXv32F44PHjY-0-5a3504914afac706c9dfdd989988ece6)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00040004.jpg?sign=1738835241-FRwtJPVQzgOiqaLhyT5ZSrWiv4orPCQW-0-fcafa9f34db655b5860878d76a619634)
同理可得
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00040005.jpg?sign=1738835241-AI2NXHsJMh3zneiyGM9Ue7ky0f48DTUc-0-7409033673e252706b1d89f894240f32)