大数据应用:成为大数据电子商务高手
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

二、大数据对传统电子商务的影响

纵观国内外市场调查机构对于电子商务未来发展的预测可以发现,电子商务产值持续呈现正增长态势。特别是大数据概念问世以后,能够妥善利用大数据的电商从业者营收几乎呈现指数级增长。大数据究竟是何方神圣?为什么大数据能够成为从业者们的一盏明灯,让他们在五花八门的电子商务市场中脱颖而出呢?想要知道这些问题的答案,我们首先得先了解传统电子商务与大数据电子商务之间的差异,如图1-6所示。

图1-6 传统电子商务与大数据电子商务的差异

(一)数据获取能力

在大数据时代,人类社会每天所产生的数据量非常庞大。因此相较于传统电子商务,大数据电子商务所面临的挑战将更加严峻,毕竟要面对如洪水般的数据浪潮。也正因如此,若有从业者宣称其电子商务经营模式中已纳入大数据分析,就表示该从业者具备大数据的获取能力。以全世界最大的网络零售商亚马逊(Amazon)为例,其鼓励顾客加入年费制会员(Amazon Prime),如图1-7所示,以便获得会员专属福利,包括免费2日送货到家、免费在线影音串流服务、云端硬盘服务、加入读书俱乐部等。

图1-7 亚马逊会员订阅界面(资料来源:亚马逊)

表面上亚马逊为会员提供了许多免费服务,其实另有谋略,那就是每当会员使用上述服务时,亚马逊就会立刻搜集会员们有意或无意留下的行为数据,例如,使用免费 2日送货到家服务的会员当中,有多少比例的会员愿意把订单金额增加到 35美元,以便升级至当天到货服务;会员一般在什么时刻收听在线音乐或观看影片,且他们又都欣赏什么类型的影音内容;有多少比例的会员会将他们手机上的照片上传至云端硬盘存放,他们存放的照片多数属于哪种类型;会员在读书俱乐部中,购书前试阅或直接购书的比例各为多少;等等。

取得上述行为数据之后,亚马逊便能够进行更为精准的数据分析,如把使用当天到货服务的会员归类为急性子,日后针对这类顾客急于收货的特点拟订推销策略。除此之外,亚马逊从行为数据中可以得知应该在什么时段推送合适的在线影音内容给有所偏好的会员欣赏,甚至是根据会员们上传至云端硬盘的照片来推测他们的生活状态、曾造访的地区、社交或家庭情况等。当然亚马逊也可以在适当时机给会员们提供电子折价券(e-coupon),以便让会员们能够以最优惠的价格买到所喜好的图书。试想,若自己是亚马逊会员,在接收到上述服务促销信息之后,是否会因为感到贴心而愿意下单消费呢?

亚马逊想要落实以上种种的精准营销手段,除了需要具备“事前资料收集策略”“当下资料捕捉”以及“事后资料分析”能力,还必须建立强有力的信息技术架构,如亚马逊云端服务(Amazon Web Service, AWS),才能够实现其大数据战略中的订阅经济(Subscription Economy),即通过强有力的数据来支持付费订阅的可行性,并将所获得的独家行为数据进行识别,转售给有需要的第三方。此时亚马逊早已不在意所提供的会员服务或专属优惠商品是否能够直接获利,经营重心已经从过去消费者付费换取商品的交易式经济(transaction economy)转型为与顾客或第三方之间所建立的长期数据关系,也就是所谓的订阅经济。图1-8是亚马逊提供给第三方的数字订阅(Subscribe with Amazon)服务界面。

图1-8 亚马逊数字订阅服务界面(资料来源:亚马逊)

以上案例都不是传统电子商务从业者可以轻易达成的,因此要想打造成功的大数据电子商务,首要任务就是确认或辨别自己是否具有数据获取能力。

(二)行为掌握能力

知名好莱坞电影《神鬼认证》与《全民公敌》都描述了主角遭到跟踪的故事,而要实现在千里之外锁定他人行踪,就要仰赖全球卫星定位系统(Global Positioning System, GPS)。无独有偶,要想在新形态的电子商务中获利,也需要使用若干追踪手法,但此处所指的追踪是侧录电子商务顾客所进行的所有网站行为。换言之,大数据电子商务必须要从顾客接触点开始就发挥顾客行为掌握能力,一直到他们结束享受服务或结束交易为止,甚至是当他们完成当下交易之后,仍可持续把握下一次与顾客互动的契机,我们称此行为掌握能力为整体历程追踪(tracking the entire journey)。

举例来说,在正常情况下,电子商务网站所进行的追踪做法并不会干扰访客的参访,且侧录动作会一直进行到他们离开网站为止。也就是说,访客们不会得知他们所留下的行为足迹早已在进站之初就被记录。图1-9为网站流量分析工具(web analytics)所记录到的谷歌官方电商网站访客行为脉络,从红色方框处可以得知该网站访客来自世界各地,其中以美国访客居多。此外,无论哪一个地区的访客,他们多数都以“(not set)”作为进站的起始网页,但从蓝色箭头处可以看出,这一页也是离站频率最高的页面。换言之,多数访客的网站参访历程堪称短暂,并没有依照网站经营者的期盼向终极目标走下去。很明显,要能够捕捉此种整体参访历程,除了网站经营者本身对大数据分析的接纳程度之外,是否能够采用正确的工具来掌握行为数据亦是不可忽视的重点。

图1-9 访客网站整体参访历程(资料来源:Google Merchandise Store)

遗憾的是,即便电商经营者能够通过各种网站分析工具来掌握访客在网站中的整体参访历程,但此举仅能视为传统电子商务进入大数据电子商务的一小步,毕竟在大数据或万物皆可联网的时代里,能够从事交易活动的场域日渐多元,故上述所提到的行为掌握能力不应该只局限在网站情境里,还要能够在各式联网情境下实现,如此才具备全渠道(omni-channel)行为掌握能力。以图1-10为例,知名连锁保健美容品牌屈臣氏除了能够依据顾客在店内或网上的消费记录来提供个人App专属优惠券(即每位顾客的折价内容不尽相同)之外,还能够捕捉顾客在其他接触点(contacting point)上所衍生出的行为数据。

图1-10 屈臣氏定制化折价券(资料来源:屈臣氏App)

爱玩美(STYLE ME)设备是一套虚拟试妆机,如图1-11所示。在这套设备问世之前,顾客往往需要实际上妆测试,才能知道所欲购买的化妆品是否适合自己。反复地上妆又卸妆,费时又费力。然而通过爱玩美设备,顾客只需对着镜头,面带微笑拍摄自己的大头贴并且点击偏好的彩妆颜色,仅一秒就可以立即看到上妆效果。此举不但快速满足了顾客上妆预览需求,也巧妙地掌握了顾客购买彩妆时的偏好信息,使得屈臣氏能够在适当时机针对特定顾客投放定制化的专属优惠。

图1-11 屈臣氏爱玩美设备

顾客接触点增加,意味着从业者能够综合分析从每个顾客接触点所获取到的顾客行为数据,提供一条龙式的消费体验,进而真正落实全通路行为掌握能力。值得注意的是,顾客接触点行为数据获取渠道琳琅满目,如低功耗蓝牙定位iBeacon、近场通信NFC(Near Field Communication)、长频段演进传输LTE(Long Term Evolution)等,无论是以何种渠道来掌握宝贵的顾客行为数据,都必须了解全渠道行为掌握能力与多渠道行为掌握能力两者在本质上的差异。

所谓全渠道行为掌握能力指的是能够在各个销售渠道中串联所有的顾客行为数据,使得看似独立的单渠道行为数据得以在不同的渠道或是不同的顾客接触点之间互通,也就是以顾客对企业(Customer to Business, C2B)的思维来将顾客需求实际反馈至营运方针上,如图1-12所示。

图1-12 全渠道与多渠道行为掌握的差异

此举有别于传统的多渠道行为掌握能力。各渠道之间的数据缺乏整合,在各自为营的情况下容易导致渠道冲突(channel conflict)。如果顾客只关注对自己有利的渠道,就会导致商家陷入自家人抢自家人生意的窘境。另外,各个渠道之间的商品售价不一致,加上网络虚拟销售成本通常低于线下实体销售成本,久而久之将导致线上渠道排挤线下渠道,使商家陷入自打嘴巴的境地。

Mukhopadhyay等学者在2008年的研究成果中提到,唯有各个渠道之间的数据透明化并且彼此分享,才有办法让价值链上的利害关系共享共荣(2),这个研究结论指的其实就是全渠道行为数据掌握能力,即掌握数据是必要条件,其优先权势必高于分享数据。阿里巴巴主要创始人马云以及鸿海科技集团原总裁郭台铭不约而同地表示电子商务将在不久的未来消失,取而代之的是新零售业线上或线下的数据串接行为。换句话说,若具备全渠道行为大数据掌握能力等同于在零售4.0时代抢得先机。

(三)顾客发言能力

前面提到的行为掌握能力从某些程度而言可以视为一种顾客意见表达的捕捉,但毕竟不是每位顾客都愿意明确地针对他们的交易历程做表态。Day等学者早在1981年就指出有些不满意的顾客缺乏抱怨意愿(3),因此上述全渠道行为数据掌握与整合恰好适用于无声无息的行为捕捉情境。然而有些顾客不只愿意将自己的交易历程清楚地表达,更习惯将所表达之意见以口耳相传的方式分享给周边的亲朋好友。有鉴于此,在大数据电子商务时代,经营者除了具备行为掌握能力之外,能否提供一个合适的场域供顾客或消费者表达己见是不能忽视的重点。在传统电子商务中,消费者往往无法在购物前(pre-purchase)享有畅所欲言的机会,即便是在购物后(post-purchase)也仅能将意见反映给电商平台经营者,如图1-13所示。探究可能的原因发现,此类型平台系由经营者直营且广邀各产品售卖者将商品上架至平台,导致平台经营者在不熟悉各种商品的情况下,无法一一回复顾客意见。

图1-13 顾客意见表达示意(1)(资料来源:PChome 24小时购物)

另一种常见的做法是在购前就提供消费者咨询渠道,如图1-14红色箭头处所示,使他们能够在获得答复后降低对产品的不确定性,提升购买信心。

图1-14 顾客意见表达示意(2)(资料来源:PChome 24小时购物)

然而无论采用以上哪种做法,仍属于传统电子商务范畴,主要原因不外乎是经营者对顾客发言能力的数据掌握有限。图1-15为淘宝网购物页面,在购前阶段,消费者即可以在红色方框处询问卖家对商品的疑惑之处。在多数情况下,卖家为了想要争取更多的订单,会在这个询问页面上保持在线状态,如此一来便能在第一时间内即刻回复消费者疑问。

除此之外,处于购前阶段的顾客还可以通过蓝色方框处的“其他顾客评论”来了解其他人对该商品的购买体验,借此增加他们对自己不熟悉商品或卖家的了解程度。值得一提的是,在绿色箭头与紫色箭头处有较少电商平台支持的功能,其中绿色箭头处的“售后服务评论”专司于卖家的服务相关评分考核,包括售后服务处理速度、纠纷率、态度评分等,顾客可根据这些指标判断此卖家是否为值得信任的交易对象。令人惊讶的是,淘宝网很贴心地将这些与服务相关的评价与其他同类型卖家对比,如图1-15黄色方框所示。如此一来,顾客可以很轻易地知道相对于其他同类型卖家,自己正在打量的这位卖家是否值得进行交易。紫色箭头处的“问大家”功能可以使不具有购买经验的顾客弥补他们无法自其他顾客评论中了解的关于商品的疑问,以主动出击的方式提出疑问并邀请具有购买经验的顾客来回答问题。

图1-15 顾客意见表达示意(3)(资料来源:淘宝网)

综合以上做法,淘宝网不外乎是想在每个交易环节降低顾客对于商品或是购物历程的不确定感,而这一切仰赖于电商平台从业者对于顾客意见表达内部与外部合纵连横的捕捉。简单地说,就是主动并且积极地塑造顾客意见表达的友善环境,辅以无声无息的全渠道行为数据整合,落实大数据电子商务的良好数据生态。

(四)专属推荐能力

如同保险业务员一般,若打算把保单推销出去,势必要对自己所销售的保险商品相当熟悉。其中,具备顾客需求洞察能力的业务员较容易达成交易。换句话说,相对于直接把商品送往销售渠道的推式销售策略,以了解顾客需求为导向的拉式销售策略更能成功地将商品传递至顾客手上,毕竟是依照顾客差异分别给予专属商品推荐。电子商务情境中所谓的专属推荐约略以是否完成交易作为分界,包含交易前推荐与交易后推荐。

1.交易前推荐

交易前推荐指的是顾客在访问网站过程中,即使没有留下实际交易记录,电商从业者也能够进行商品推荐,此做法通常仰赖推荐对象之外其他顾客的历史参访记录或是历史交易记录。以图1-16中的蓝色方框处为例,假设某人打算在博客来网络书店购买一本书,若此人对于要购买什么样的书籍没有头绪,那么就可以参考“买了此商品的人,也买了……”板块下的内容。很明显,这样的推荐方式必须建构在其他具有购买经验的顾客的历史交易记录上,因为浏览相同书籍的顾客彼此之间可能拥有相似的阅读偏好。但人毕竟是一个独立个体,仍有些顾客对于这样的推荐方式无动于衷,也就是以他人购买经验来给顾客推荐的做法并未100%地落实。

图1-16 以他人记录为基础的交易前推荐(资料来源:博客来)

为了能够更契合地达成个人化专属推荐,越来越多的大数据电子商务从业者采取比传统电子商务从业者还要详细的交易前推荐方式。以图1-17蓝色方框处为例,“猜你喜欢”推荐功能系依照顾客自身参访足迹归纳出的各式商品汇整数据,此做法建立在“浏览即表示有购买需求、偏好或意愿”之上,而且商品归纳与汇整的依据并非来自他人,因此比起前文提到的借由他人历史交易记录来进行推荐活动更接近个人化专属推荐。

图1-17 以自我记录与他人记录为基础的交易前推荐(资料来源:淘宝App)

当然,通过他人交易经验来进行交易前推荐也并非一无是处,以红色方框处的“消费者评论”为例,上面提示了曾经购买此袜子的消费体验,一旦将“他人交易体验”与“自身参访足迹”两项结合,就能够提供更为具体且高度个人化的专属交易前推荐。换句话说,假设某顾客具有袜子购买需求,在电商网站中反复浏览不同款式袜子(即“自身参访足迹”),比起其他没有提供顾客评论(即“他人交易体验”)的袜子款式,有提供顾客评论的袜子款式更让顾客清楚地了解该款袜子是否符合自己喜好,最后在契合自身交易需求以及他人意见支持的情况下,做出具有信心的购买决策。

2.交易后推荐

除了交易前推荐以外,电商从业者还可以依据顾客实际交易记录来推荐他们所喜好的商品。以图1-18蓝色方框处的“你可能还想买”为例,以顾客实际下单记录作为交易后的推荐依据。这种做法与传统电子商务中常提到的顾客关系管理如出一辙,即通过顾客的交易记录数据来实施营销、业务拓展以及售后服务等顾客关系维系活动。然而大数据时代下的新电子商务受惠于互联网的普及,使得从业者可以在各个渠道之间搜集数据,让原本的营销、业务拓展以及售后服务能够从网站情境跳离至其他场域,这也是为何具备大数据的交易后推荐能更为人性化且契合顾客需求的主要原因。

图1-18 交易后推荐(1)(资料来源:淘宝App)

以图1-19为例,这是一台由小米公司所推出的PM2.5空气净化器,用户购买后可以通过手机App来操作这台机器,在净化室内空气的同时也能了解这台机器运作情况(如家中PM2.5指数)。乍看这台净化器似乎没有什么新奇之处,其他品牌也推出类似的机种,也就是说即使是不同品牌的机型,它们彼此之间都拥有相同的运作原理与功能,如净化室内有害的PM2.5细悬浮微粒、云端联机及App绑定操作等。然而小米空气净化器与其他从业者所推出的净化器最大的差异就藏在数据细节中,这正是我们所讨论到的交易后推荐行为。

图1-19 交易后推荐(2)(资料来源:小米空气净化器)

如同之前提及的推式销售思维,大多数从业者仅是设法将此类型净化器销售出去,商品售出后则由售后服务单位接手,一旦发现商品存在问题,便在最短的时间内服务顾客,产品整体销售的生命周期也就告一段落。小米空气净化器有别于其他产品,不把商品销售视为一次性动作,也不把售后服务当作是与顾客互动的终点,而是通过商品成功售出后的顾客接触点来与顾客保持互动。

以图1-20小米空气净化器App的操作界面为例,我们可以从红色方框处观察到,该App能够显示净化器的滤芯剩余天数,一旦剩余天数趋近零,小米立即采取拉式销售策略,并且提供给用户专属的优惠价格,整个推荐过程堪称完备。换句话说,每当该机型空气净化器运作时,小米即通过大数据不断地搜集机器运作资料,再借由之前所提及的数据转化力将看似无用的数据予以再利用,此时由于用户已经购买了该机型,自然会有滤芯购买需求,小米趁势在恰当的时机落实了交易后阶段所需具备的专属推荐能力,进而从数据中提炼出有价值的信息。

图1-20 交易后推荐之数据转化力(资料来源:小米空气净化器)

综合以上讨论的数据获取能力、行为掌握能力、顾客发言能力以及专属推荐能力,我们可以归纳出图1-21左侧的大数据电子商务成熟度模式(Big Data Maturity Model in E-Commerce)。此模式虽与Knowledgent公司所提出的巨量资料成熟度阶层(4)(Levels of Big Data Maturity)有着异曲同工之妙,如图1-21右侧所示,但前者较为聚焦在新兴电子商务对于大数据商业作为的成熟度审视之上,而非大数据在数据科学上的ETL应用,即筛选(Extract)、转换(Transformation)、加载(Load)。换言之,若欲在新形态的电子商务下获取数据价值,最重要的是电商经营者是否能够自各个渠道获取宝贵的数据(层级1:数据获取能力),随后从数据中洞察并掌握多变的顾客行为(层级2:行为掌握能力),并且设法在各渠道中提供友善的畅所欲言的环境(层级3:顾客发言能力),最终统整自层级1至层级3所获得的宝贵数据,投放契合顾客需求的专属推荐(层级4:专属推荐能力)信息。

图1-21 大数据电子商务成熟度模式vs巨量数据成熟度阶层