
会员
生成式人工智能
丁磊更新时间:2023-05-30 15:18:25
最新章节:参考资料开会员,本书免费读 >
ChatGPT一经问世,在全球范围内引起巨大轰动,GPT-4接入未来办公软件更是让人震惊,而且技术正在以前所未有的速度快速迭代。那么,以这些技术为代表的生成式人工智能(AIGC)是否为新一轮的技术革命?它到底能做什么,具有哪些优势和场景应用趋势?面对新技术,未来商业的机会在哪里,对我们个人又有着什么样的影响?……这些问题对于我们理解当下,面向未来都十分重要。本书基于作者的专业背景和长期实践,系统介绍生成式人工智能的内在逻辑与应用,并将其与产业发展,理论和实际相结合,帮助读者从本源了解生成式人工智能,结合未来趋势和发展为读者指明方向。
品牌:中信出版社
上架时间:2023-04-01 00:00:00
出版社:中信出版集团
本书数字版权由中信出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
丁磊
主页
最新上架
- 会员
人工智能新时代:核心技术与行业赋能
本书以人工智能为核心,上篇讲述了人工智能理论知识及发展蓝图规划,目的是帮助读者认识人工智能,找到入局人工智能领域的途径和方法;中篇罗列了可以为人工智能赋能的前沿技术,包括NLP、机器学习、大数据、物联网、区块链等;下篇总结了人工智能对交通、农业、医疗、制造、教育、金融、文娱等行业的影响和作用,旨在让读者了解人工智能是如何在这些行业实现商业化落地的。本书从多个角度出发,描绘了一幅完整的人工智能发展蓝计算机15.8万字 - 会员
人工智能编程实践:C++编程5级
青少年人工智能编程水平测试涵盖从数学逻辑到计算思维、从拖曳程序模块到程序编写、从数学建模到算法设计等多学科知识,能够对学生的多学科知识综合运用能力做出评价;能够通过设计的具体解决方案,对学生的计算思维、创造性思维等能力做出评价;在具体的解决方案中,能够通过设计算法模型和实现算法,对学生掌握和运用编程的能力做出评价。本书结合生活中的实例,系统地介绍了不同进制之间的转换、函数参数的作用域、枚举算法、二计算机2万字 - 会员
《机器学习》习题参考
本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络计算机19.3万字 - 会员
人工智能技术
本书介绍了人工智能概览、机器学习、深度学习、人工智能主流开发框架、华为全栈全场景AI战略—EI、HiAI、昇腾,以及人工智能综合实验等内容?这是一本华为ICT学院人工智能课程培训的教材。本书是作者和华为的工作人员共同完成的,其间参阅了国内外现有教材和相关文献后编写的?全书注重理论与实践的结合,注重算法与框架的实际应用与实现方法,注重创新思维的训练与培养?本书既可作为高等院校人工智能课程的培训教材,计算机13.6万字 - 会员
AI原生应用开发:提示工程原理与实战
本书结合AI原生应用落地的大量实践,系统讲解提示工程的核心原理、相关案例分析和实战应用,涵盖提示工程概述、结构化提示设计、NLP任务提示、内容创作提示、生成可控性提示、提示安全设计、形式语言风格提示、推理提示和智能体提示等内容。本书的初衷不是告诉读者如何套用各种预设的提示模板,而是帮助读者深入理解和应用提示设计技巧,以找到决定大语言模型输出的关键因子,进而将提示工程的理论知识应用到产品设计中。本书计算机18.2万字 - 会员
硅基物语·我是灵魂画手:一本书讲透AI绘画
本书通过实践案例操作,讲述AI绘画的生成步骤,展现了AI绘画的魔法魅力。从历史到未来,跨越百年时空;从理论到实践,讲述案例操作;从技术到哲学,穿越多个维度;从语言到绘画,落地实战演练。AI绘画的诞生,引发了奇点降临,点亮了AGI(通用人工智能),并涉及Prompt、风格、技术细节、多模态交互、AIGC等一系列讲解。计算机5.5万字 - 会员
大模型实战:微调、优化与私有化部署
本书深入浅出地介绍了现代大型人工智能(ArtificialIntelligence,AI)模型技术,从对话机器人的发展历程和人工智能的理念出发,详细阐述了大模型私有化部署过程,深入剖析了Transformer架构,旨在帮助读者领悟大模型的核心原理和技术细节。本书的讲解风格独树一帜,将深奥的技术术语转化为简洁明了的语言,案例叙述既严谨又充满趣味,让读者在轻松愉快的阅读体验中自然而然地吸收和理解AI计算机15.8万字 - 会员
量子人工智能
量子计算与人工智能的交叉融合,促使量子人工智能的不断发展。本书旨在采用对深度学习爱好者友好的方式,构建量子人工智能应用。全书共13章,第1章和第2章系统介绍量子计算机发展脉络和量子计算编程的基础知识。第3~7章分别介绍不同的深度学习方法和在这些算法逻辑上构建量子启发算法的方式,用量子线路中的相位作为神经网络的可学习参数,重构为量子神经网络算子。这些算子可以在PyTorch环境中直接调用。第8章和第计算机7.6万字 - 会员
机器学习教程(微课视频版)
本书兼顾机器学习基础、经典方法和深度学习方法,对组成机器学习的基础知识和基本算法进行了比较细致的介绍,对广泛应用的经典算法如线性回归、逻辑回归、朴素贝叶斯、支持向量机、决策树和集成学习等算法都给出了深入的分析并讨论了无监督学习的基本方法,对深度学习和强化学习进行了全面的叙述,比较深入地讨论了反向传播算法、多层感知机、CNN、RNN和LSTM等深度神经网络的核心知识和结构;对于强化学习,不仅介绍了经计算机20.6万字